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ABSTRACT: The circuit optimization process is
defined as a controlled dynamic system with a
special control vector. This vector serves as the
main tool for generalizing the problem of circuit
optimization and produces a huge number of
different optimization strategies. In this case, we can
formulate the task of finding the best optimization
strategy that minimizes processor time. We need to
find the optimal structure of the control vector that
minimizes processor time. A special function, which
is a combination of the Lyapunov function of the
optimization process and its time derivative, was
proposed to predict the optimal structure of the
control vector. The found optimal positions of the
switching points of the control vector give a large
gain in CPU time in comparison with the traditional
approach.

KEYWORDS: Circuit optimization, Control theory
approach, Controllable dynamic system, Lyapunov
function.

1. INTRODUCTION

Reducing computational time  when
designing large systems is one of the sources of
overall improvement in design quality. This problem
is of great importance because it has many
applications, for example, for designing electronic
circuits of VLSI. Any traditional system design
strategy includes two main parts: the analysis of
mathematical model of the physical system and
optimization procedure that achieves the optimum
point of cost function of designing.

There are several powerful methods that
reduce the time required to analyze the circuit. Since
the matrix of the large-scale scheme is very sparse,
special methods of the sparse matrix are
successfully used for this purpose [1]. Other
approach to reducing the amount of computation is
based on decomposition methods. An extension of
direct solution methods can be obtained by
hierarchical decomposition and macro model
presentation [2]. Another approach to achieving
decomposition at a nonlinear level is to use special

iteration methods and implemented in [3] for the
iterated timing analysis and circuit simulation.

The methods for optimizing analog circuits
can be divided into two main groups: deterministic
optimization methods and stochastic search
algorithms. Some of the drawbacks of classical
deterministic optimization algorithms are the
requirement of a good starting point in the
parameter space, the unsatisfactory local minimum
that can be achieved, and very often the requirement
of continuity and differentiability of the goal
function. To overcome these problems, some special
methods were applied. For example, geometric
programming methods [4], guarantee convergence
to a global minimum, but, on the other hand, this
requires a special formulation of equations and
poses additional difficulties.

In  recent years, stochastic search
algorithms have been developed, especially
evolutionary computation algorithms such as genetic
algorithms (GA), differential estimates, genetic
programming, etc. [5]-[7]. GA was used as
optimization routine for analog circuits because of
its ability to find a satisfactory solution. A special
algorithm defined as a particle swarm optimization
(PSO) technique is one of the evolutionary
algorithms and competes with GA [8]-[10]. In
recent years, articles have appeared using the neural
networks approach to optimize analogue circuits
[11]-[13]. However, in this case, apparently, one
does not need to rely on a significant reduction in
optimization time.

The practical aspects of deterministic
methods were developed for the design of electronic
circuits with various optimization criteria [14]. The
fundamental problems of developing the structure
and adaptation of automation design systems were
considered in some works [15], [16].

The ideas of designing the system
described above as deterministic and stochastic can
be called the traditional approach or the traditional
strategy, since the analysis method is based on the
laws of Kirchhoff.
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The idea of rejecting Kirchhoff’s laws
when designing electronic circuits was implemented
in two design systems [17], [18]. The most general
approach was implemented in the development of a
generalized methodology for the process of
optimization of an electronic circuit, defined as a
controlled dynamic system [19]. With this approach,
a traditional design strategy is just one
representative of a wide range of different design
strategies. The potential gain in computer time that
can be obtained by this approach increases when the
size and complexity of the system increases.

Il. PROBLEM FORMULATION

The design process of any analog system
can be defined in discrete form [19] as the task of
minimizing the generalized cost function F(X,U)
using system (1) with constraints (2):
X=X+t H°, (1)
@-u)g;(X)=0, j=12,..., ™, (2)

where X =(X’,X"), X'eR¥, is a

vector of independent variables, X" eRMis a
vector of dependent variables, M is the number of
the circuit’s dependent variables, K is the number of
independent variables, N is the total number of
variables (N=K+M) and T, is an iteration
parameter, t. e R*. Additional restrictions, as the
positive definiteness of some independent variables,
are easily included in the general optimization
procedure, as shown by specific examples. Equation
(1) describes a minimization procedure, and the
function H=H(X,U) determines the direction in
which the generalized goal function F(X,U)
decreases. The functions g (X)for all j define the
equations of the circuit model. The components of
control vector U are a set of control functions:
U=(u,,U,,.. Uy ), Where u, € Q, Q={0;1}. The
complete set of different optimization strategies
includes 2" strategies. This set can be called a

structural basis.The generalized goal function
F(X,U) can be defined, as follows:

F(X, U)=C(X)+p(X, U) 3)

whereC(X) is a non-negative goal function of the
design process, and gp(X, U)is an additional penalty
function:

1M ,
(p(X,U)=;Zu,- g2(X), @

i1

where £ is an additional coefficient used to adapt
the penalty function.

This formulation of the problem permits to
redistribute the computational time between the
problems (1) and (2). The control vector U is the
main tool of this methodology. The task of finding
the optimal design strategy is formulated in this case
as a typical task to minimize the functional of
control theory. The functional that needs to be
minimized is the total CPU time T of the design
process. This functional directly depends on the
number of operations and on the design strategy that
has been implemented. We need to know the

optimal dependencies of all control functions U .

A continuous form of task definition is
more adequate for applying control theory. This
continuous form replaces Eg. (1) and can be
represented as follows:

dx; .
L= f(X,U), i=12,...N, 5
ey ®

This system, together with equations (2),
(3) and (4), constitutes a continuous form of the
design process. The structural basis of a set of
strategies corresponding to a fixed control vector
includes 2 different strategies. The functions of the
right-hand side of system (5) are defined, for
example, for the gradient method, as:

f,(X, U) = —%F(x, U). i=12,..,K.6)

F(X,U)= —u, ;Xip<x, v
PO 00}
i=K+LK+2,....N, (6

where the operator & / OX; hear andbelow means

K+M @(
ip(x)zw+ S p(X) &, and
5Xi é(i p=K+1 @(p @(i
determines the application of the gradient method
for a complex function that has both independent
and dependent variables, X; equals x;(t —dt); and
£;(X) is the implicit function (X, = (X))
determined by the system (2).

Control functions UJ— are time-dependent
in the general case. In this context, the goal of
optimal control is to minimize the cost function
F(X,U) for the shortest possible CPU time. The
functions f;(X,U) are piecewise continuous and their

structure can be found by approximate methods of
control theory [20].
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I1l. LYAPUNOV FUNCTION

Based on the analysis presented in the
previous section, we can conclude that the time-
optimal algorithm can be constructed as a set of
different strategies with several switching points
from one strategy to another.

From the set of optimization strategies that
exist within the framework of the structural basis,
two specific strategies can be distinguished, the

traditional optimization strategy (TOS), when U j=0
for all j and the modified traditional optimization
strategy (MTOS), when szl for all j. As shown in

[21] it is necessary to switch the control vector from
MTQOS to TOS in order to obtain a special super-
acceleration effect. The main problem of
constructing a time-optimal algorithm is the
unknown optimal sequence of switching points in
the design process. We need to define a special
criterion that allows us to implement an optimal or
quasi-optimal algorithm by searching for optimal
switching points. It is known that the Lyapunov
function of a dynamic system serves as a very
informative object for analyzing the behavior of a
system in the framework of control theory. We
suggest using the Lyapunov function of the design
process to determine the main characteristics of the
optimal algorithm, in particular, to search for
optimal switching points.

There is freedom of choice of the
Lyapunov function due to the non-unique form of
this function. Let us define the Lyapunov function
of the design process (2)-(6) by the following
expression:

V(X,U)=[F(X,U)[ (7)

The function (7) satisfies all the conditions
of the standard definition of the Lyapunov function.

We can define the design process as a
transient process of a controlled dynamic system
that can provide a stationary point (the end point of
the optimization procedure) for some time. The task
of constructing an algorithm of time-optimal design
can now be formulated as the task of finding a
transient process with a minimum transition time.
The idea of minimizing the transition process time
by means of a special choice of the right-hand side
of the main system of equations is well known [22];
in our case, these are the functions f;(X,U). It is
necessary to change the functions fi(X,U) by
choosing the control vector U to obtain the
maximum rate of decrease of the Lyapunov function
(the maximum absolute value of the time derivative

of the Lyapunov function v =dV/dt). Now we can
define a more informative function as the time

derivative of the Lyapunov function relative to the

Lyapunov function: W =V/V . In this case, we can
compare various design strategies using the
behavior of the function W(t) to find the optimal
position for the switching points of the control
vector.

IV. RESULTS AND DISCUSSION

All examples were analyzed for the
continuous form of the optimization procedure (5).
The functions V(t) and W(t) were the main objects
of analysis, and their behavior was analysed during
the design process. It is interesting to analyze the
behavior of the function V(t) to determine the
optimal position of the switching points of the
control vector. This function serves as a sensitive
criterion for determining the optimal switching of
the control vector U. The Lyapunov function V(t)
for all examples was calculated by formula (8) with
r=0.5.

4.1 Example 1

An analysis of the design process of the
three-node passive nonlinear circuit shown in Figure
1 is presented below.

Figure 1: Three-node nonlinear passive circuit

The nonlinear elements are defined as:
2 2

Y = am"'bnl'(vl _Vz) + Yoo =8y by, '(Vz _Va) . The
vector X includes seven components:
2 2 2 2
=Y X =Y X = Vs K=Y %=V, %=V, X =V,
The meaning of introducing squares for variables
X; corresponds to overcoming additional
restrictions on the positive definiteness of
conductivities Yy, .

The mathematic model (2) of this network
includes three equations (M=3):

gl(x)E_xlz + (X12 + XZZ)X5
+[ay +0y (X5 = %6)] (X5 — %) =0
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gz(x)E nge +[anl +bnl(xs —XG)Z](XG _Xs) 8
+[a,, +by, (X _X7)2](X6 _X7):0
gs(X)E X§X7 +[a,, +0,, (% _X7)2](X7 —Xe):O

The optimization procedure (5) includes
seven equations. This network is characterized by
three dependent parameters and the control vector
includes three control functions: U=(u,,u,,u,).

The goal function C(X) is defined by the formula:

C(X) = (Vl _Vz - k1)2 +(V2 _Vs - k2)2 +(V3 _k3)2 ’
The structural basis of strategies includes eight
different strategies with the corresponding control
vector: (000), (001), (010), (011), (100), (101),
(110), and (111). The CPU time for TOS is 1.34 sec.
The behavior of the functions V(t) and W(t) helps us
determine the optimal position of the switching
point of the control vector.

Taking into account preliminary
considerations about the optimal structure of the
algorithm, we analyzed a two-part strategy. The first
part is determined by the control vector (111), which
corresponds to MTOS, and the second part is
determined by the control wvector (000), which
corresponds to TOS. Thus, switching is carried out
between these two strategies.

The optimal position of the switching point
was the main goal of this analysis. A sequential
change of the switching point was implemented for
the integration step number from 2 to 20.

The behavior of the functions V(t) and
W(t) during the design process after the switching
point is shown in Figure 2.

PRI\

Figure 2: Behavior of the functions V(t) and W(t)
during the design process for seven different switch
points (from 6 to 12)

As discussed above, the main element of
the fast algorithm is the optimal position of the
switching point of the control vector. Figure 2
shows the behavior of the functions V(t) and W(t)
for seven different positions of the switching point.
The corresponding total number of iterations and
computer time are presented in Table 1.

Table 1: Iterations number and computer time for
strategies with different switch points for circuit in
Figure 1

N |Switch [lterations |Total
point [number |design

fime (sec)
1 6 8409 (0659
2 7 6408 0.502
3 8 3141 0246
4 9 180 0.014
9 10 3310 (0259
6 11 2918 0.464
7 12 7404 0.581

Integration of system (5) was carried out with a
constant step. The analysis shows that the optimal
switching point corresponds to step 9 (graph 4 with
dots in Figure 2). The analysis shows that the
optimal switching point corresponds to step 9 (graph
4 with dots in Figure 2). Curves 1, 2, and 3
correspond to the position of the switching point
before the optimal point (curve 4), but curves 5, 6,
and 7 correspond to the switching point that is after
the optimal one. There is a decrease in computer
time from curve 1 to curve 4. On the contrary,
computer time increases from curve 4 to curve 7. It
means that curve 4 corresponds to the optimal
position of the switching point.

The initial part of the dependence of the
function W(t) in Figure 2 is shown in Figure 3 on a
large scale.
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Figure 3: Behavior of the functions V(t) and W(t)
during the initial part of design process

It can be seen that curves 1, 2, and 3, which
correspond to switching points in front of the
optimal point (4), have no intersections. On the
other hand, curves 5, 6, and 7, obtained for the
switching point after the optimal one, have
intersections, and each curve lies above curve 4,
starting from a certain step. This means that from
this moment the graph W(t) for the optimal
switching point lies below all other graphs. Thus, on
the one hand, the optimal switching point
corresponds to the minimum computer time, on the
other hand, this point corresponds to the graph of
the function W(t), which lies below all other graphs.
This property again serves as the main criterion for
choosing the optimal switching point. The function
W(t), which corresponds to the optimal switching
point, has a maximum absolute value, starting from
the 15th step of integration. This means that at this
stage of integration, we can confidently predict the
optimal position of the switching point, which will
lead to minimal computing time. The optimal
strategy is 95 times faster than TOS.

4.2 Example 2
The following example corresponds to a single-
stage transistor amplifier in Figure 4.

Figure 4: One-stage transistor amplifier

Vector X includes six components:
X =y, o=y, X=y, X =V, %=V, X =V.
The model of this circuit (2) includes three
equations (M=3) and the optimization procedure (5)
includes six equations. The structural basis contains
eight different design strategies. The control vector
includes five control functions: U= (ul,uz,u3). A

static Ebers-Mall model of transistor was used [23].
The goal function C(X) is determined by the

formula C(X)=[(x; —x,)—m,J* +[(; —x,)-m, "
where m;, M, are the required voltage values at the

transistor junctions. The CPU time for TOS is 26.97
sec.

Figure 5 shows the behavior of the
functions V(t) and W(t) in the design process with
different switching points.

rO.T

—IN I D

|

1 {sec)

o
o
=L I hD

Figure 5: Behavior of the functions V(t) and W(t)
during the design process for seven different switch
points (from 33 to 39) for circuit in Figure 4

The behavior of these functions helps us
determine the optimal position of the switching
point of the control vector. We analyzed the
strategy, which consists of two parts. The first part
is determined by the control vector (111), which
corresponds to MTOS, and the second part is
determined by the control vector (000), which
corresponds to TOS. The optimal switching point
was the goal of the analysis. A sequential change of
the switching point was implemented for integration
steps from 2 to 50. The behavior of the functions
V(t) and W(t) for the switch points from 33 to 39 are
shown in this figure and the data, which correspond
to these graphs, are presented in Table 2.

Table 2: Iterations number and computer time for
strategies with different switch points for single-
stage transistor amplifier in Figure 4
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IJAEM
N |Switch llerations | Total (K=9) and Six dependent variables
point |number |design V,,V,,V,,V,,V.,Vy, (M=6) for TOS. The vector
1i me. (sec) X includes 15 components;
1 33 2433 0.404 X12 =Y X§ =Yy X92 =Yg, Xig =Vi, Xpy =V X5 =Ve.
2 34 2180 0.361 The model of this circuit (2) includes six equations
3 35 1748 0. 289 (M=6) and the optimization procedure (5) includes
4 36 171 002 15 equations. The structural basis contains 64
5 a7 1705 0,281 different design strategies. The control vector
B 28 5111 {]- 210 includes six control functions: U = (ul,uz,..., us).
7 30 2340 0.380 The goal function C(X) is determined by the

The analysis shows that the optimal
switching point corresponds to step 36 (a graph with
dots). Computer time has a minimum value for this
step. We see that the function W(t) has a maximum
absolute value for the optimal switching step
(number 4), starting from the 55th integration step.
We observe the specific behavior of the function
W(t) near the optimal position of the switching
point. Before the optimal switching point, the graphs
of the function W(t) are “parallel”. The function
W(t) has a maximum negative value for optimal
switching points. The graphs of the function W(t)
that correspond to the optimal position of the
switching point (number 4) and before the optimal
position (1, 2 and 3) do not intersect. After the
optimal points, the graphs of the function W(t)
intersect the graphs that correspond to the optimal
switching point and before the optimal one. This
means that we can confidently predict the optimal
position of the switching points in the initial part of
the design process. Optimal strategy is faster than
TOS 1348 times.

4.3 Example 3

The last example corresponds to the
optimization process for the amplifier with feedback
shown in Figure 6.

Figure 6: Amplifier with feedback

In this case, we can define nine
independent variables Y,,Y,, Y5, Y4 Ys: Yo Y70 Yar Yo

formula

C(X) :(Xm —Xp _ml)z +(X1z — Xy _mz)z +(X13 _ms)
2

2

2 2
+(X14 _m4) +(X14 — X5 _ms) +(E1 — X5 _me)
wherem,, m,, m;, m,, mg, my, are the before-

defined values of voltages on GS and DS for Qq, Q>
and Qz. These parameters were defined as: m;=-1.8
V, my=6.8 V, my=-2.0 V, m;=6.8 V, ms=-1.5 V,
me=6.0 V. The CPU time for TOS is 1426.7 sec.

A quasi-optimal strategy can be composed
as a combination of MTOS and TOS with two
switching points. The first switching point
corresponds to the n-th step of optimization
procedure and changing the control vector from
(11111111111) to (00000000000), and the second
switching point corresponds to the n+6-th step and
changing the control vector from (00000000000) to
(11111111111).

The optimal distribution of switching
points over the behavior of the Lyapunov function
V(t) and its time derivative W(t) is analysed.

The behavior of the functions V(t) and
W(t) is shown in Figure 7 for various switching
points. All graphs start from the point that lies at the
40th step of the optimization procedure.

o

6 =2
(7.

iE———2——

7/ s

Figure 7: Behavior of the functions V(t) and W(t)
during the design process for seven different switch
points (from 10 to 16) for circuit in Figure 6
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The total number of iterations and
computing time are presented in Table 3 for some
switching points close to optimal.

Table 3: Iterations number and computer time for
strategies with different switch points for amplifier
in Figure 6

N |Switch |Switch |lterations| Total
point 1 |point 2 [number |design
fime (sec)
10 16 8187 154.31
11 17 7432 140.04
12 18 4797 90.36
13 19 167 3.14
14 20 8405 158.41
15 21 11610 218.61
16 22| 12372 233.16

Integration of system (1) was carried out
using an optimal integration step. As in the previous
example, the optimization algorithm was proposed
as a combination of MTOS and TOS. In this case,
the quasi-optimal control vector includes two
switching points. We change the control vector from
(11111111111) to (00000000000) and from
(00000000000) to (11111111111). A sequential
change of the switching point was implemented for
the integration step number from 2 to 25. The
behavior of the functions V(t) and W(t) for the
optimal switching step and some steps near the
optimal one confidently determines the optimal
position of the switching point. The function W(t)
has a maximum negative value for the optimal
switching point. The graphs of the function W(t)
that correspond to the optimal position of the
switching point (number 4) and before the optimal
position (1, 2 and 3) do not intersect. After the
optimal point, the graphs of the function W(t)
intersect with the graphs that correspond to the
optimal switching point. This means that we can
determine the optimal position of the switching
points during the initial interval of the design
process. Optimal strategy is faster than TOS 454
times.

N[ | AWM=

V. CONCLUSION

We observe a specific behavior of the
function W(t) near the optimal switch point’s
position. Before the optimal switch point the
function W(t) graphs are “parallel”. Function W(t)
has the maximum negative value for the optimal
switch points. The graphs of the function W(t) that
correspond to the optimal switch point’s position
and before the optimal position have not
intersection. After the optimal points the graphs of
the function W(t) intersect the graphs that

correspond to the optimal switch point and before
the optimal one. It means that we can detect the
optimal position of the switch points during the
initial design interval.

So, the structure of the optimal control
vector i.e. the structure of the time optimal design
strategy can be defined by means of the analysis of
the relative time derivative of the Lyapunov
function during the initial time interval of the design
process. The Lyapunov function of the design
process contains sufficient information to select the
optimal control vector that gives the minimum CPU
time.
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