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ABSTRACT: The circuit optimization process is 

defined as a controlled dynamic system with a 

special control vector. This vector serves as the 

main tool for generalizing the problem of circuit 

optimization and produces a huge number of 

different optimization strategies. In this case, we can 

formulate the task of finding the best optimization 

strategy that minimizes processor time. We need to 

find the optimal structure of the control vector that 

minimizes processor time. A special function, which 

is a combination of the Lyapunov function of the 

optimization process and its time derivative, was 

proposed to predict the optimal structure of the 

control vector. The found optimal positions of the 

switching points of the control vector give a large 

gain in CPU time in comparison with the traditional 

approach. 

KEYWORDS: Circuit optimization, Control theory 

approach, Controllable dynamic system, Lyapunov 

function. 

 

I. INTRODUCTION 
Reducing computational time when 

designing large systems is one of the sources of 

overall improvement in design quality. This problem 

is of great importance because it has many 

applications, for example, for designing electronic 

circuits of VLSI. Any traditional system design 

strategy includes two main parts: the analysis of 

mathematical model of the physical system and 

optimization procedure that achieves the optimum 

point of cost function of designing.  

There are several powerful methods that 

reduce the time required to analyze the circuit. Since 

the matrix of the large-scale scheme is very sparse, 

special methods of the sparse matrix are 

successfully used for this purpose [1]. Other 

approach to reducing the amount of computation is 

based on decomposition methods. An extension of 

direct solution methods can be obtained by 

hierarchical decomposition and macro model 

presentation [2]. Another approach to achieving 

decomposition at a nonlinear level is to use special 

iteration methods and implemented in [3] for the 

iterated timing analysis and circuit simulation. 

 The methods for optimizing analog circuits 

can be divided into two main groups: deterministic 

optimization methods and stochastic search 

algorithms. Some of the drawbacks of classical 

deterministic optimization algorithms are the 

requirement of a good starting point in the 

parameter space, the unsatisfactory local minimum 

that can be achieved, and very often the requirement 

of continuity and differentiability of the goal 

function. To overcome these problems, some special 

methods were applied. For example, geometric 

programming methods [4], guarantee convergence 

to a global minimum, but, on the other hand, this 

requires a special formulation of equations and 

poses additional difficulties. 

 In recent years, stochastic search 

algorithms have been developed, especially 

evolutionary computation algorithms such as genetic 

algorithms (GA), differential estimates, genetic 

programming, etc. [5]-[7]. GA was used as 

optimization routine for analog circuits because of 

its ability to find a satisfactory solution. A special 

algorithm defined as a particle swarm optimization 

(PSO) technique is one of the evolutionary 

algorithms and competes with GA [8]-[10]. In 

recent years, articles have appeared using the neural 

networks approach to optimize analogue circuits 

[11]-[13]. However, in this case, apparently, one 

does not need to rely on a significant reduction in 

optimization time. 

 The practical aspects of deterministic 

methods were developed for the design of electronic 

circuits with various optimization criteria [14]. The 

fundamental problems of developing the structure 

and adaptation of automation design systems were 

considered in some works [15], [16]. 

 The ideas of designing the system 

described above as deterministic and stochastic can 

be called the traditional approach or the traditional 

strategy, since the analysis method is based on the 

laws of Kirchhoff. 
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 The idea of rejecting Kirchhoff’s laws 

when designing electronic circuits was implemented 

in two design systems [17], [18]. The most general 

approach was implemented in the development of a 

generalized methodology for the process of 

optimization of an electronic circuit, defined as a 

controlled dynamic system [19]. With this approach, 

a traditional design strategy is just one 

representative of a wide range of different design 

strategies. The potential gain in computer time that 

can be obtained by this approach increases when the 

size and complexity of the system increases. 

 

II. PROBLEM FORMULATION 
The design process of any analog system 

can be defined in discrete form [19] as the task of 

minimizing the generalized cost function F(X,U) 

using system (1) with constraints (2): 
s

s

s1s HtXX  ,  (1) 

    0Xgu1 jj  , j M12, ,..., , (2) 

where  X,XX  , 
KRX  , is a 

vector of independent variables, 
MRX  is a 

vector of dependent variables, М is the number of 

the circuit’s dependent variables, K is the number of 

independent variables, N is the total number of 

variables (N=K+M) and t s  is an iteration 

parameter, 1Rt s  . Additional restrictions, as the 

positive definiteness of some independent variables, 

are easily included in the general optimization 

procedure, as shown by specific examples. Equation 

(1) describes a minimization procedure, and the 

function HH(X,U) determines the direction in 

which the generalized goal function F(X,U) 

decreases. The functions  Xjg for all j define the 

equations of the circuit model. The components of 

control vector U are a set of control functions: 

 Muuu ,...,,U 21 , where ju ,   0 1; . The 

complete set of different optimization strategies 

includes 2
M

 strategies. This set can be called a 

structural basis.The generalized goal function 

F(X,U) can be defined, as follows: 

     UX,XCUX,F   (3) 

whereC(X) is a non-negative goal function of the 

design process, and  UX, is an additional penalty 

function: 

   



M

j

jj gu
1

2 X
1

UX,


 , (4)  

 

where  is an additional coefficient used to adapt 

the penalty function. 

  

This formulation of the problem permits to 

redistribute the computational time between the 

problems (1) and (2). The control vector U is the 

main tool of this methodology. The task of finding 

the optimal design strategy is formulated in this case 

as a typical task to minimize the functional of 

control theory. The functional that needs to be 

minimized is the total CPU time T of the design 

process. This functional directly depends on the 

number of operations and on the design strategy that 

has been implemented. We need to know the 

optimal dependencies of all control functions ju . 

 A continuous form of task definition is 

more adequate for applying control theory. This 

continuous form replaces Eq. (1) and can be 

represented as follows: 

  UX,i
i f

dt

dx
 ,  Ni ,...,2,1 , (5) 

 This system, together with equations (2), 

(3) and (4), constitutes a continuous form of the 

design process. The structural basis of a set of 

strategies corresponding to a fixed control vector 

includes 2
M

 different strategies. The functions of the 

right-hand side of system (5) are defined, for 

example, for the gradient method, as: 

 

   UX,UX, F
x

f
i

i



 ,   i K12, ,..., ,(6) 

 

   

 
  X

1

UX,UX,

i

s

i

Ki

i

Kii

x
dt

u

F
x

uf


















,   
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where the operator hear andbelow means  

 
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
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
1

XX
X ,   and 

determines the application of the gradient method 

for a complex function that has both independent 

and dependent variables, 
s

ix equals  x t dti  ; and 

 Xi  is the implicit function (  Xiix  ) 

determined by the system (2). 

 Control functions u j  are time-dependent 

in the general case. In this context, the goal of 

optimal control is to minimize the cost function 

F(X,U) for the shortest possible CPU time. The 

functions fi(X,U) are piecewise continuous and their 

structure can be found by approximate methods of 

control theory [20]. 

 

ix /
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III.  LYAPUNOV FUNCTION 
 Based on the analysis presented in the 

previous section, we can conclude that the time-

optimal algorithm can be constructed as a set of 

different strategies with several switching points 

from one strategy to another. 

  From the set of optimization strategies that 

exist within the framework of the structural basis, 

two specific strategies can be distinguished, the 

traditional optimization strategy (TOS), when u j =0 

for all j and the modified traditional optimization 

strategy (MTOS), when u j =1 for all j. As shown in 

[21] it is necessary to switch the control vector from 

MTOS to TOS in order to obtain a special super-

acceleration effect. The main problem of 

constructing a time-optimal algorithm is the 

unknown optimal sequence of switching points in 

the design process. We need to define a special 

criterion that allows us to implement an optimal or 

quasi-optimal algorithm by searching for optimal 

switching points. It is known that the Lyapunov 

function of a dynamic system serves as a very 

informative object for analyzing the behavior of a 

system in the framework of control theory. We 

suggest using the Lyapunov function of the design 

process to determine the main characteristics of the 

optimal algorithm, in particular, to search for 

optimal switching points. 

 There is freedom of choice of the 

Lyapunov function due to the non-unique form of 

this function. Let us define the Lyapunov function 

of the design process (2)-(6) by the following 

expression: 

  

     rFV U,XU,X 
  

(7) 

 The function (7) satisfies all the conditions 

of the standard definition of the Lyapunov function. 

 We can define the design process as a 

transient process of a controlled dynamic system 

that can provide a stationary point (the end point of 

the optimization procedure) for some time. The task 

of constructing an algorithm of time-optimal design 

can now be formulated as the task of finding a 

transient process with a minimum transition time. 

The idea of minimizing the transition process time 

by means of a special choice of the right-hand side 

of the main system of equations is well known [22]; 

in our case, these are the functions fi(X,U). It is 

necessary to change the functions fi(X,U) by 

choosing the control vector U to obtain the 

maximum rate of decrease of the Lyapunov function 

(the maximum absolute value of the time derivative 

of the Lyapunov function dtdVV /


). Now we can 

define a more informative function as the time 

derivative of the Lyapunov function relative to the 

Lyapunov function: VVW /


 . In this case, we can 

compare various design strategies using the 

behavior of the function W(t) to find the optimal 

position for the switching points of the control 

vector. 

 

IV. RESULTS AND DISCUSSION 
 All examples were analyzed for the 

continuous form of the optimization procedure (5). 

The functions V(t) and W(t) were the main objects 

of analysis, and their behavior was analysed during 

the design process. It is interesting to analyze the 

behavior of the function V(t) to determine the 

optimal position of the switching points of the 

control vector. This function serves as a sensitive 

criterion for determining the optimal switching of 

the control vector U. The Lyapunov function V(t) 

for all examples was calculated by formula (8) with  

r= 0.5. 

 

4.1 Example 1 

 An analysis of the design process of the 

three-node passive nonlinear circuit shown in Figure 

1 is presented below. 

 

 
Figure 1: Three-node nonlinear passive circuit 

 

 The nonlinear elements are defined as: 

 221111 VVbay nnn  ,  2

32222 VVbay nnn  . The 

vector X includes seven components: 

3726154

2

43

2

32

2

21

2

1 ,,,,,, VxVxVxyxyxyxyx  . 

The meaning of introducing squares for variables 

ix  corresponds to overcoming additional 

restrictions on the positive definiteness of 

conductivities iy . 

 The mathematic model (2) of this network 

includes three equations (M=3): 

 

0))](([

)(X

656511

5

2

2

2

1

2

11





xxxxba

xxxxg

nn
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  0])([

])([X
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2

7622

56

2

65116

2

32





xxxxba

xxxxbaxxg

nn

nn (8) 

    0])([X 67

2

76227

2

43  xxxxbaxxg nn  

 

The optimization procedure (5) includes 

seven equations. This network is characterized by 

three dependent parameters and the control vector 

includes three control functions: U=  321 ,, uuu . 

The goal function  XC  is defined by the formula: 

       233

2

232

2

121X kVkVVkVVC  . 

The structural basis of strategies includes eight 

different strategies with the corresponding control 

vector: (000), (001), (010), (011), (100), (101), 

(110), and (111). The CPU time for TOS is 1.34 sec. 

The behavior of the functions V(t) and W(t) helps us 

determine the optimal position of the switching 

point of the control vector. 

 Taking into account preliminary 

considerations about the optimal structure of the 

algorithm, we analyzed a two-part strategy. The first 

part is determined by the control vector (111), which 

corresponds to MTOS, and the second part is 

determined by the control vector (000), which 

corresponds to TOS. Thus, switching is carried out 

between these two strategies. 

 The optimal position of the switching point 

was the main goal of this analysis. A sequential 

change of the switching point was implemented for 

the integration step number from 2 to 20. 

 The behavior of the functions V(t) and 

W(t) during the design process after the switching 

point is shown in Figure 2. 

 

 
Figure 2: Behavior of the functions V(t) and W(t) 

during the design process for seven different switch 

points (from 6 to 12) 

 

 As discussed above, the main element of 

the fast algorithm is the optimal position of the 

switching point of the control vector. Figure 2 

shows the behavior of the functions V(t) and W(t) 

for seven different positions of the switching point. 

The corresponding total number of iterations and 

computer time are presented in Table 1.  

 

Table 1: Iterations number and computer time for 

strategies with different switch points for circuit in    

Figure 1 

 
  

Integration of system (5) was carried out with a 

constant step. The analysis shows that the optimal 

switching point corresponds to step 9 (graph 4 with 

dots in Figure 2). The analysis shows that the 

optimal switching point corresponds to step 9 (graph 

4 with dots in Figure 2). Curves 1, 2, and 3 

correspond to the position of the switching point 

before the optimal point (curve 4), but curves 5, 6, 

and 7 correspond to the switching point that is after 

the optimal one. There is a decrease in computer 

time from curve 1 to curve 4. On the contrary, 

computer time increases from curve 4 to curve 7. It 

means that curve 4 corresponds to the optimal 

position of the switching point. 

 The initial part of the dependence of the 

function W(t) in Figure 2 is shown in Figure 3 on a 

large scale. 
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Figure 3: Behavior of the functions V(t) and W(t) 

during the initial part of design process 

It can be seen that curves 1, 2, and 3, which 

correspond to switching points in front of the 

optimal point (4), have no intersections. On the 

other hand, curves 5, 6, and 7, obtained for the 

switching point after the optimal one, have 

intersections, and each curve lies above curve 4, 

starting from a certain step. This means that from 

this moment the graph W(t) for the optimal 

switching point lies below all other graphs. Thus, on 

the one hand, the optimal switching point 

corresponds to the minimum computer time, on the 

other hand, this point corresponds to the graph of 

the function W(t), which lies below all other graphs. 

This property again serves as the main criterion for 

choosing the optimal switching point. The function 

W(t), which corresponds to the optimal switching 

point, has a maximum absolute value, starting from 

the 15th step of integration. This means that at this 

stage of integration, we can confidently predict the 

optimal position of the switching point, which will 

lead to minimal computing time. The optimal 

strategy is 95 times faster than TOS. 

 

4.2 Example 2 

The following example corresponds to a single-

stage transistor amplifier in Figure 4. 

 

 

Figure 4: One-stage transistor amplifier 

 

 Vector   X   includes   six    components: 

3625143

2

32

2

21

2

1 ,,,,, VxVxVxyxyxyx  . 

The model of this circuit (2) includes three 

equations (M=3) and the optimization procedure (5) 

includes six equations. The structural basis contains 

eight different design strategies. The control vector 

includes five control functions: U=  321 ,, uuu . A 

static Ebers-Mall model of transistor was used [23]. 

The goal function  XC  is determined by the 

formula        2246

2

145X mxxmxxC  , 

where 21 ,mm  are the required voltage values at the 

transistor junctions. The CPU time for TOS is 26.97 

sec. 

 Figure 5 shows the behavior of the 

functions V(t) and W(t) in the design process with 

different switching points. 

 
Figure 5: Behavior of the functions V(t) and W(t) 

during the design process for seven different switch 

points (from 33 to 39) for circuit in Figure 4 

 

 The behavior of these functions helps us 

determine the optimal position of the switching 

point of the control vector. We analyzed the 

strategy, which consists of two parts. The first part 

is determined by the control vector (111), which 

corresponds to MTOS, and the second part is 

determined by the control vector (000), which 

corresponds to TOS. The optimal switching point 

was the goal of the analysis. A sequential change of 

the switching point was implemented for integration 

steps from 2 to 50. The behavior of the functions 

V(t) and W(t) for the switch points from 33 to 39 are 

shown in this figure and the data, which correspond 

to these graphs, are presented in Table 2. 

 

Table 2: Iterations number and computer time for 

strategies with different switch points for single-

stage transistor amplifier in Figure 4 
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 The analysis shows that the optimal 

switching point corresponds to step 36 (a graph with 

dots). Computer time has a minimum value for this 

step. We see that the function W(t) has a maximum 

absolute value for the optimal switching step 

(number 4), starting from the 55th integration step. 

We observe the specific behavior of the function 

W(t) near the optimal position of the switching 

point. Before the optimal switching point, the graphs 

of the function W(t) are “parallel”. The function 

W(t) has a maximum negative value for optimal 

switching points. The graphs of the function W(t) 

that correspond to the optimal position of the 

switching point (number 4) and before the optimal 

position (1, 2 and 3) do not intersect. After the 

optimal points, the graphs of the function W(t) 

intersect the graphs that correspond to the optimal 

switching point and before the optimal one. This 

means that we can confidently predict the optimal 

position of the switching points in the initial part of 

the design process. Optimal strategy is faster than 

TOS 1348 times. 

 

4.3 Example 3 

 The last example corresponds to the 

optimization process for the amplifier with feedback 

shown in Figure 6.  

 

 
Figure 6: Amplifier with feedback 

 

 In this case, we can define nine 

independent variables 987654321 ,,,,,,,, yyyyyyyyy  

(K=9) and six dependent variables 

654321 ,,,,, VVVVVV , (М=6) for TOS. The vector 

X includes 15 components:

6152111109

2

92

2

21

2

1 ,...,,,,...,, VxVxVxyxyxyx  . 

The model of this circuit (2) includes six equations 

(M=6) and the optimization procedure (5) includes 

15 equations. The structural basis contains 64 

different design strategies. The control vector 

includes six control functions:  621 ,...,,U uuu . 

The goal function  XC  is determined by the 

formula  

     

     2

6151

2

51514

2

414

2

313

2

21112

2

11110)(

mxEmxxmx

mxmxxmxxXC




 

where
654321 ,,,,, mmmmmm  are the before-

defined values of voltages on GS and DS for Q1, Q2 

and Q3. These parameters were defined as: m1=-1.8 

V, m2=6.8 V, m3=-2.0 V, m4=6.8 V, m5=-1.5 V, 

m6=6.0 V. The CPU time for TOS is 1426.7 sec. 

 A quasi-optimal strategy can be composed 

as a combination of MTOS and TOS with two 

switching points. The first switching point 

corresponds to the n-th step of optimization 

procedure and changing the control vector from 

(11111111111) to (00000000000), and the second 

switching point corresponds to the n+6-th step and 

changing the control vector from (00000000000) to 

(11111111111). 

 The optimal distribution of switching 

points over the behavior of the Lyapunov function 

V(t) and its time derivative W(t) is analysed. 

 The behavior of the functions V(t) and 

W(t) is shown in Figure 7 for various switching 

points. All graphs start from the point that lies at the 

40th step of the optimization procedure. 

 

 
Figure 7: Behavior of the functions V(t) and W(t) 

during the design process for seven different switch 

points (from 10 to 16) for circuit in Figure 6 
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 The total number of iterations and 

computing time are presented in Table 3 for some 

switching points close to optimal. 

 

Table 3: Iterations number and computer time for 

strategies with different switch points for amplifier 

in Figure 6 

 
 Integration of system (1) was carried out 

using an optimal integration step. As in the previous 

example, the optimization algorithm was proposed 

as a combination of MTOS and TOS. In this case, 

the quasi-optimal control vector includes two 

switching points. We change the control vector from 

(11111111111) to (00000000000) and from 

(00000000000) to (11111111111). A sequential 

change of the switching point was implemented for 

the integration step number from 2 to 25. The 

behavior of the functions V(t) and W(t) for the 

optimal switching step and some steps near the 

optimal one confidently determines the optimal 

position of the switching point. The function W(t) 

has a maximum negative value for the optimal 

switching point. The graphs of the function W(t) 

that correspond to the optimal position of the 

switching point  (number 4) and before the optimal 

position (1, 2 and 3) do not intersect. After the 

optimal point, the graphs of the function W(t) 

intersect with the graphs that correspond to the 

optimal switching point. This means that we can 

determine the optimal position of the switching 

points during the initial interval of the design 

process. Optimal strategy is faster than TOS 454 

times. 

 

V. CONCLUSION 
 We observe a specific behavior of the 

function W(t) near the optimal switch point’s 

position. Before the optimal switch point the 

function W(t) graphs are “parallel”. Function W(t) 

has the maximum negative value for the optimal 

switch points. The graphs of the function W(t) that 

correspond to the optimal switch point’s position 

and before the optimal position have not 

intersection. After the optimal points the graphs of 

the function W(t) intersect the graphs that 

correspond to the optimal switch point and before 

the optimal one. It means that we can detect the 

optimal position of the switch points during the 

initial design interval. 

So, the structure of the optimal control 

vector i.e. the structure of the time optimal design 

strategy can be defined by means of the analysis of 

the relative time derivative of the Lyapunov 

function during the initial time interval of the design 

process. The Lyapunov function of the design 

process contains sufficient information to select the 

optimal control vector that gives the minimum CPU 

time. 
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