

A Review on Medicinal Properties of Lantana Camara Linn

1***Kaveri V Dhanwate**, 2.**Prof. Gargi Kirloskar**, 3. **Kalyani Dongare**, 4. **Ashwin wagh**

1,3,4 Students and 2.Teacher.

Matoshri institute of pharmacy Dhanore , Yeola -423405, Tal- Yeola, Dist- Nashik , Maharashtra, India.

Date of Submission: 10-11-2024

Date of Acceptance: 20-11-2024

ABSTRACT: India has a long heritage of using plant-based knowledge in health care. Few natural medications in India have been thoroughly researched despite their abundance. Lantana camara is an evergreen shrub that grows throughout India. Traditionally, it has been used to heal a variety of diseases, and these claims are confirmed by scientific evidence. Various publications have described the phytoconstituents found in all sections of Lantana camara. Over the past few decades, scientists and researchers worldwide have extensively examined the chemical composition and biological pharmacological activity of the entire L. Camara plant. These results suggest that Lantana camara has therapeutic promise in modern medicine and could be a viable drug discovery target. This article examines the pharmacological properties and toxicity of Lantana camara .
Key words : Medicinal plant , Lantana camara Linn, Antibacterial , Anti –fungal , Herbal drug , Anti- Inflammatory.Lantana camara Linn. Is a flowering orna

Indian Lantana. L. Camara is a well-known medicinal plant in traditional medicine, and new scientific investigations highlight its potential application in modern medicine.

Plant Profile :

Botanical name – Lantana camara Linn.
Synonym – Lantana aculeate, Camara vulgaris,Lantana indica Roxb., Lantana Salvifolia Jacq., Lantana trifolia, Lantana orangemene etc .
Biological Source – it is obtained from species of flowering plant. It Belong into family **verbenaceae**.
Location – India , central and south America .

Chemical constituents –

1. Alkaloids, glycosides, steroids, saponins, flavanoids, coumarins, tannins, Carbohydrates, Anthraquinone glycosides, proteins, phytosteroids, fixed oils, fats, and Triterpinoids (11).
2. B-sitosterol, Betulonic acid, Betulinic acid, Campesterol, Hispidulin, Pectolinarigenin, Pectolinarin.
3. Camaraside, Camarinic acid, Camaric acid, Lantanilic acid, Linaroside, Lantanoside, Linaroside, Oleanolic acid, Ursonic acid.
4. Lantadene A, B, C, Lantanolic acid, Lantic acid, Theveside, Ursolic acid, Verbascoside, isonuomiosideA,Isoverbascoside, Lamiridoside and 8-epiloganin .
5. ρ -Coumaric acid , ρ hydroxybenzoic acid, and vanillic acid.(12)

• Parts Used

The entire plant, including leaves, roots, and flower seeds bark, is used medicinally.(13 –15)

• Leaves -

Lantana leaves can demonstrate antibacterial, fungicidal and insecticidal effects. *L. Camara* has also been used in traditional herbal treatments to treat cancer, skin itching, leprosy, chicken pox, measles, asthma, and ulcers.

Figure no. 1 Leaves of Lantana camera

- **Roots –**

The beginnings of Lantana contain oleanolic acid, which has anti- inflammatory, hepatoprotective, anti-tumor, antioxidant, and anti- hyperlipidemic properties.

- **Flower –**

Lantana plants have long been utilised in traditional medicine. They are supposed to treat a variety of common health ailments, including fever, colds, coughs, headaches, skin infections, and digestive problems.

Figure no. 2 Lantana camera of flower.

- **Seeds -**

Lantana extract has been used in folk medicine to treat chicken pox, measles, asthma, skin itches, wounds, and leprosy.

Figure no.3 Lantana camera of seeds

- **Bark –**

Camara preparations are also prescribed to treat high blood pressure, asthma, rheumatism, and colds. Attention in drug development for its anti-cancer, antibacterial, AIDS, and anti- inflammatory properties.

- **Medicinal Uses :**

1. Traditionally, the herb has been used as a diaphoretic, carminative, antispasmodic, tonic, and antiemetic to treat respiratory infections and disorders (cough, cold, asthma, and bronchitis).
2. Powdered leaves are used to treat cuts, wounds, ulcers, and swellings.
3. Leaf infusion is used to treat bilious fever, eczema, and rashes.
4. The fruits can be utilised to treat fistulas, pustules, tumours, and rheumatism. 5)The root treats malaria, rheumatism, skin rashes, dermatitis, eczema, mycotic infections, and respiratory tract illnesses such as influenza and tuberculosis.
6. A infusion of fresh roots is used as a gargle to treat odontalgia (13-15).

- **Physicochemical characteristics:**

Physical-chemical characteristics The physicochemical properties of *L. Camara* leaves Included 8.06 total ash, 0.95 water-soluble ash, 1.96 acid insoluble, 27.5 water-soluble Extractive value, and 25.1% alcohol-soluble extractive value (16).

The fruits had a total ash Of 1.59, water-soluble ash of 0.48, acid insoluble ash of 2.1, sulfated ash of 10.3, water-Soluble extractive value

of 6.0, alcohol-soluble extractive value of 2.1, and 11.3% loss after drying (17).

- **Plant Distribution :**

L. camara grows naturally throughout Central and Northern South America, as well as the Caribbean. *L. Camara* is now found in approximately 60 nations in the tropical, subtropical, and temperate regions of the world.(18-19)

- **Description :**

L. Camara is a strong shrub with a triangular stem that grows low and erect (subscandent). It can grow up to 1-3 meters tall and 2.5 meters wide. The leaves are rectangular, acute or subacute, crenate-serrate, rugose on top, and scabrid on both sides. They are green in colour, about 3-8 cm long and 3-6 cm wide. The leaves and stems are coated with prickly hair. Small flower clusters. Colours range from orange, white, and red and usually change with age. Flowers have a golden throat and occur in the axillary head all year. The flower has a small calyx, a slender corolla tube, and a 6-7 mm wide limb with irregular lobes.

Inflorescences grow in pairs on the axils of opposite leaves.(20).

- **Phytochemical composition :**

The phytochemical content of *L. Camara* has been extensively researched over the last few decades. *L. Camara* includes a wide range of phytochemicals, including essential oils, phenolic compounds, flavonoids, carbohydrates, proteins, alkaloids, glycosides, iridoid glycosides, phenyl ethanoid, oligosaccharides, quinine, saponins, steroids, triterpens, sesquiterpenoids, and tannin.(21-24)

- **Ethnopharmacology :**

L. Camara is a significant medicinal herb with traditional uses. It has been used globally to treat a variety of health issues. The leaves have been used to treat a variety of ailments, including cuts, rheumatisms, ulcers, catarrhal infections, tetanus, malaria, cancer, chicken pox, asthma, ulcers, swelling, eczema, tumours, high blood pressure, biliary fever, abdominal visceral ataxy, sores, measles, fevers, colds, and hypertension.(25-27)

- **Medicinal properties of *Lantana camera* Linn**

L. camara is a medicinal plant that has been linked to numerous health benefits.

- **Anti-inflammatory activity :**

Anti-inflammatory action An aqueous extract of *L. Camara* demonstrated anti-inflammatory action in albino rats. In rats, extract treatment (500mg/kg body weight) significantly lowered paw volume in a carrageenan-induced paw oedema test.(28)

- **Wound healing activity :**

The ethanol extract of *L. Camara* leaf has been shown to heal wounds in adult male Wister rats. Topical use of the extract dramatically improved wound healing activity. Histological analysis of cured wounds revealed extract's significance in healing. In another study, an aqueous extract of *L. Camara* leaf was found to promote wound healing in rats. Topical administration of the extract (100 mg/kg/day) dramatically improved wound contraction (98%), collagen synthesis, and reduced healing time .(29-30)

- **Anticancer and antiproliferative activity:**

Oleanonic acid from *L. Camara* was tested for anticancer activity against a murine tumour (Ehrlich ascites carcinoma) and three human cancer cell lines: A375 (malignant skin melanoma), Hep2 (epidermoid laryngeal carcinoma), and U937 (lymphoma).

Oleanonic acid showed promising cytotoxicity against A375 cells.(31)

- **Antioxidant activity:**

An ethanolic extract of *L. Camara* showed substantial antioxidant activity in in vivo investigations. The extract administration lowered lipid peroxidation in the kidneys of urolithic rats. The study was conducted in vitro using DPPH and Nitric oxide free radical scavenging assays. The extract showed high antioxidant activity in both experiments.(32)

- **Anticancer effects :**

L. Camara root and leaf extracts were tested for anticancer effects on Jurkat leukaemia cells using the MTT assay. The extracts have similar antineoplastic properties (root: IC50 = 328.36±53.08 µg/ml, leaf: 394.41±99.73 µg/ml). Apoptosis induction was identified as the mechanism of anticancer effect on Jurkat cells through morphological exams (33).

- **Haemolytic activity :**

The haemolytic activity of *L. Camara* aqueous extract and its solvent fractions was assessed using a modified spectroscopic approach at four concentrations (125, 250, 500, and 1000 µg/ml).

The aqueous extract and its solvent fractions showed minimal haemolytic activity against human erythrocytes. The extracts exhibited haemolytic action in the sequence listed below: The order of fractions is as follows: chloroform, hexane and ethyl acetate (50:50), aqueous extract, ethanol, and methanol.(34)

- **Antifilarial activity:**

Crude extract of *L. Camara* stem shown antifilarial action. The extract and chloroform fraction killed adult *Brugia malayi* and sterilised most surviving female worms in the mouse model *Mastomys coucha*.(35)

- **Extraction process of *Lantana camera* Linn**

—

- Fresh leaf samples weighing around 350 grams will be shade dried for 10 days before Being ground into a coarse powder for future usage.
- The 320 g powder from *Lantana camara* L. Leaves will be hydro extracted in a soxhlet Apparatus for 6 hours using the British Pharmacopoeia (1980) technique.
- The essential oil will be dried with anhydrous sodium sulfate (Na₂SO₄) for 6-8 hours, then Filtered through Whatman no. 1 filter paper, as per the Hand Book On Medical and Aromatic Plants.
- The samples were refrigerated below 4°C for analysis.

- **Identification Test for *Lantana camera* Linn.** —

The Identification plant extracts were tested using established techniques to determine Their components.

***Test For Alkaloids –**

Mayer's Test: Using Mayer's reagent, alkaloids produce a cream- colored Precipitate.Potassium mercuric iodide solution.

Dragendorf's Test: Using Dragendorf's reagent, alkaloids produce a reddish brown Precipitate. Potassium bismuth iodide solution.

Wagner's Test: Alkaloids give reddish brown precipitate with Wagner's reagent. (Iodine Solution in potassium iodide).

***Tests For Flavanoids –**

Shinoda Test (magnesium hydrochloride reduction test):

To the test solution add few bits of magnesium ribbon and add strong hydrochloric acid Drop wise, pinkScarlet, crimson red or occasionally green to blue colour appears after few Minutes.

Alkaline Reagent Test: To the test solution add few drops of sodium hydroxide solution, Formation of an intense yellow colour which turns to colourless by the addition of few drops Of dilute acetic acid indicate the presence of flavonoids.

Ferric Chloride Test: To the test solution, add few drops of ferric chloride solution,intenseGreen colour was formed.

***Test For Phenolic Compounds**

Ferric Chloride Test: To the test solution and add few drops of neutral 5% ferric chloride Solution. A dark green colour indicates the presence of phenolic compounds.

Lead Acetate Test: To the test solution and add few drops of 10% lead acetate solution. White Precipitate indicates the presence of phenolic compounds.

Gelatin Test : To the test solution and add few drops of 10% Gelatin solution. White Precipitate indicates the presence of phenolic compounds.

***Test For Tannin**

Ferric Chloride Test: To the test solution, few drops of ferric chloride test reagent were Added. An intense green, purple, blue or black colour developed was taken as an evidence For the presence of tannins.

Lead Acetate Test : A few drops of 10% lead acetate were mixed into the test solution. A precipitate was generated, indicating the presence of tannins.

***Test for Glycosides**

Keller Killiani Test (cardiac glycosides): To 0.5g of plant extract, add 0.4 ml of glacial Acetic acid with a trace of ferric chloride.

Transfer to a tiny test tube; carefully add 0.5 ml of Concentrated sulphuric acid around the edges of the test tube; blue color in the acetic acid Layer indicates the presence of cardiac glycosides.

Borntrager's test (anthraquinone glycosides): 0.5 g of plant extract was shaken with Benzene until the organic layer separated, then half of its own volume of 10% ammonia Solution was added. Pink, crimson, or violet coloring in the ammonical

phase showed the Presence of anthraquinone glycosides.

*Tests for Amino Acids

Millon's Test: Add roughly 2ml of Millon's reagent (Mercuric nitrate in nitric acid with traces Of nitrous acid) to the test solution. A white precipitate forms, which turns red when gently Heated.

Ninhydrin Test: When amino acids and proteins are cooked with a few drops of a 5% Solution of ninhydrin, the color violet occurs.

*Test for protein

Biuret Test: Add 4% NaOH solution and a few drops of 1%CuSO₄ solution to the test Solution; the presence of protein is indicated by the violet color that arises.

Millon's Test: Add roughly 2ml of Millon's reagent (Mercuric nitrate in nitric acid with traces Of nitrous acid) to the test solution. A white precipitate forms, which turns red when gently Heated.

*Tests for steroids and triterpenoids

Liebermann-Burchard Test: Extract is treated with a few drops of acetic anhydride, boiled And cooled, and concentrated sulphuric acid is added along the side of the test tube, Resulting in a brown ring at the junction of two layers and the upper layer turning green, Indicating the presence of sterols, and the formation of a deep red colour, indicating the Presence of triterpenoids.

Salkowski's Test: Treat the extract in chloroform with a few drops of strong sulphuric acid, Shake well, and leave to stand for some time. Red color occurs in the lower layer indicates The presence of sterols, while the production of a yellow colored lower layer indicates the Presence of triterpenoids.

*Tests for Carbohydrates

Molisch's Test: To conduct the Molisch's Test, add a few drops of alcoholic α -naphthol to 1ml of test solution. Add 0.2 ml of concentrated sulphuric acid slowly along the sides of the test tube, from purple to violet. A coloured ring appears at the junction.

Fehling's Test: Mix an equal volume of Fehling's A (Copper sulphate in distilled water) and Fehling's B (Potassium tartarate and Sodium hydroxide in distilled water) reagents, add a few drops of sample, and boil until a brick red precipitate of cuprous oxide forms, indicating the presence of reducing sugar.

*Test for oils and fats.

A tiny amount of the extract was squeezed between two Filter sheets. Oil stains on filter papers indicate the presence of oils and fats.

*Tests for saponin

Froth Test: A pinch of dried powdered plant was mixed with 2-3 cc of distilled water. The Mixture was mixed vigorously. The formation of foam shows the presence of saponin.

*Test for organic acids.

Oxalic Acid: Add a few drops of 1% KMnO₄ to the test solution and dilute with H₂SO₄. The Colour vanishes.

Malic Acid: To the test solution, add 2-3 drops of 40% FeCl₃ solution, which turns Yellowish.

*Tests for Inorganic Acids

Sulphate Test: Adding lead acetate reagent to the test solution produces a white Precipitate that is soluble in NaOH.

Carbonate Test: To the test solution, add a weak HCl solution to release CO₂. Indicate the Existence of carbonate.

II. CONCLUSION -

L. Camara has potential for future medicine development, as indicated by ethnomedical and scientific studies. Lantana camara is a plant that is widely utilised in traditional medicine throughout the world. Lantana oil is used to treat skin irritation, wounds, leprosy, and scabies. Triterpenes and flavones are the most common secondary metabolites found in Lantana camara. Lantana leaf extracts have antimicrobial, fungicidal, insecticidal, and nematocidal properties.

REFERENCES :-

- [1]. Rajkumar V et al. Evaluation of cytotoxic potential of Acorus Calamus rhizome. Rajkumar Ethnobotanical Leaflets. 13 (6); 2009: 832-839.
- [2]. Kumar SV, Sankar P and Varatharajan R. Anti-inflammatory Activity of roots of Achyranthes aspera. Pharmaceutical Biology. 47 (10); 2009: 973-975.
- [3]. Sabu MC and Kuttan R. Anti-diabetic activity of medicinal plants And its relationship with their antioxidant property. Journal of Ethnopharmacology. 81 (2); 2002:155-160.
- [4]. Adama K et al. In vitro antihelmintic effect of two medicinal Plants (Anogeissus leiocarpus and Daniellia oliveri) on Haemonchus contortus, an abosomal nematode of sheep in Burkina Faso.

African Journal of Biotechnology. 8 (18); 2009: 4690-4695.

[5]. Kumar G, Karthik L and Rao KVB. Phytochemical composition And in vitro antimicrobial activity of *Bauhinia racemosa* Lamk (Caesalpiniaceae). International Journal of Pharmaceutical Sciences and Research. 1 (11); 2010: 60-67.

[6]. Kumar G, Karthik L and Rao KVB. Antimicrobial activity of Latex of *Calotropis gigantea* against pathogenic microorganisms-An in vitro study. Pharmacologyonline. 3; 2010: 155-163.

[7]. Kumar G, Karthik L and Rao KVB. In vitro anti-Candida activity Of *Calotropis gigantea* against clinical isolates of Candida. Journal of Pharmacy Research. 3 (3); 2010 :539-542.

[8]. Dhanabal SP et al. Hepatoprotective activity of the Indian Medicinal plant *Polygala arvensis* on D-galactosamine-induced Hepatic injury in rats. Fitoterapia. 77 (6); 2006:472-474.

[9]. Priya CL et al. Antioxidant activity of *Achyranthes aspera* Linn Stem extracts. Pharmacologyonline. 2; 2010: 228-237.

[10]. Pitasawat B et al. Screening for larvicidal activity of ten Carminative plants. Southeast Asian Journal of Tropical Medicine and Public Health. 29 (3); 1998: 660-662.

[11]. Ganatra SH, Gurubaxani BS. Preliminary phytochemical and TLC Profiling of *Lantana camara* leaf extracts. J Chem Pharma Res 2016;8:614-7.

[12]. Gopie-shkhanna V and Kannabiran K. Larvicidal effect of *Hemidesmus indicus*, *Gymnema sylvestre*, and *Eclipta prostrata* against *Culex quinquefasciatus* mosquito larva. African Journal of Biotechnology 6, 2007, 307-311.

[13]. Verma SC, Jain CL, Nigam S, Padhi MM. Rapid extraction, isolation, And quantification of oleanolic acid from *Lantana camara* roots Using microwave and HPLC-PDA techniques. Acta Chromatogr 2013;25:181-99.

[14]. Dharmagada VS, Tandonb M, Vasudevan P. Biocidal activity Of the essential oils of *Lantana camara*, *Ocimum sanctum* and, *Tagetes patula*. J Sci Ind Res 2005;64:53-6.

[15]. Barreto F, Sousa E, Campos A, Costa J, Rodrigues F. Antibacterial Activity of *Lantana camara* Linn and *Lantana montevidensis* brig. Extracts from cariri-ceará, brazil. J Young Pharm 2010;2:42-4.

[16]. Pradhan RR, Hati DK, Samal S. Pharmacognostical phytochemical And antimicrobial studies on the leaves of *Lantana camara*. Pharm Lett 2012;4:1648-56.

[17]. Venkatachalam T, Kumar VK, Selvi PK, Maske AO, Kumar NS. Physico-chemical and preliminary phyto-chemical studies on the *Lantana camara* fruits. Int J Pharm Pharm Sci 2011;3:52-4.

[18]. Asija R, Kumar V, Sharma AK. Hepatoprotective activity of *Lantana Camera* against carbon tetrachloride induced hepatotoxicity in Wister Rat. Int J Pharm Erudition 2015;4:1-7.

[19]. Dua VK, Pandey AC, Dash AP. Adulterical activity of essential oil Of *Lantana camara* leaves against mosquitoes. Indian J Med Res 2010;131:434-9.

[20]. Sastri BN. The Wealth of India. New Delhi, India: CSIR; 1962.

[21]. Venkatachalam T et al. Physicochemical and preliminary Phytochemical studies on the *Lantana Camara* (L.) fruits. International Journal of Pharmacy and Pharmaceutical Sciences. 3 (1); 2011: 52-54.

[22]. Kensa VM. Studies on phytochemical screening and antibacterial Activities of *Lantana camara* Linn. Plant Sciences Feed. 1 (5); 2011: 74-79.

[23]. Kalita S et al. Phytochemical composition and in vitro hemolytic Activity of *Lantana camara* L. (Verbenaceae) leaves. Pharmacologyonline. 1; 2011: 59-67.

[24]. Bhakta D, Ganjewala D. Effect of leaf positions on total Phenolics, flavonoids and proantho-cyanidins content and Antioxidant activities in *Lantana camara* (L). Journal of Scientific Research. 1 (2); 2009: 363-369.

[25]. Khare CP. Indian Medicinal Plants – An Illustrated Dictionary. Berlin, Springer, 2007.

[26]. Kirtikar KR, Basu BD. Indian medicinal plants. New Delhi, India. 2006.

[27]. Chopra RN, Nayar SL and Chopra IC. Glossary of Indian Medicinal plants. CSIR New Delhi, India. 1956.

[28]. Gidwani BK, BhargavaS, Rao SP, Majoomdar A, Pawar DP, Alaspure RN; Analgesic, anti-Inflammatory and antihemorrhoidal activity of Aqueous

extract of Lantana Camara Linn. Research Journal of Pharmacy and Technology, 2009; 2 (2): 378-381.

[29]. Abdulla MA, Hassandarvish P, Ali HM, Noor SM, Mahmoud FH, Ahmad Bashah NS et al.; Acceleration of Wound Healing Potential by Lantana camara Leaf Extract in Experimental Rats. Research Journal of Medical Sciences, 2009; 3 (2):75-79.

[30]. Nayak BS, Raju SS, Eversley M, Ramsubhag A; Evaluation of wound healing activity of Lantana camara L. – a preclinical study. Phytotherapy Research, 2009; 23 (2): 241-245.

[31]. (31). Ghosh S, Das Sarma M, Anti-inflammatory and anticancer Compounds isolated from *Ventilago madraspatana* Gaertn., *Rubia cordifolia* Linn. And *Lantana camara* Linn. Journal of Pharmacy and Pharmacology. 62 (9); 2010: 1158-1166.

[32]. Mayee R, Thosar A, Evaluation of *Lantana camara* Linn. (Verbenaceae) for antiurolithiatic and antioxidant activities in Rats. International Journal of Pharmaceutical and Clinical Research. 3 (1); 2011: 10-14.

[33]. Badakhshan MP, Sreenivasan S, Jegathambigai RN, Surash R. Antileukemia activity of methanolic extracts of *Lantana camara*. Pharmacogn Res 2009;1:274-9.

[34]. Kalita S et al. Phytochemical composition and in vitro hemolytic Activity of *Lantana camara* L. (Verbenaceae) leaves. Pharmacologyonline. 1; 2011: 59-67.

[35]. Misra N et al. Chemical constituents and antifilarial activity of *Lantana camara* against human lymphatic filariid *Brugia malayi* And rodent filariid *Acanthocheilonema viteae* maintained in Rodent hosts. Parasitology Research. 100 (3); 2006: 439-448.