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ABSTRACT: In this paper, we summarize some 

results about the inverse scheduling problem    
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  of the total completion time 

objective on parallel machines 
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   in 

which the processing times  1 2, ,...,
T

np p p p  

are minimally adjusted, so that the given schedule   

is satisfying the necessary conditions and sufficient 

conditions  for the scheduling problem  
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   and 
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   and becomes 

optimal with respect to  1 2, ,...,
T

np p p p . 

We have obtained the mathematical programming 

formulations for this inverse scheduling problem 

with different norms and provided efficient 

solution algorithms. 
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I. INTRODUCTION 
In the recent past and in the recent year, 

many authors studied the inverse optimisation in 

schedulinh refers to the situation. There are a large 

number of article on inverse optimisation in 

schedulinh refers to the situation. Lun and Cariou 

[4]; Lun et al. [5], derived  the processing times or 

the weights of the n   jobs can be adjusted 

depending on the deployment of such resources as 

quay cranes to load/discharge containers on/from 

the ship and trucks to transport containers between 

the quayside and the container yard, so that the 

scheduling criterion (e.g., the tatal weighted 

completion time, which is summary measure of the 

waiting times of the jobs or the inventory level in 

the shop) is minimised with respect to the adjusted 

processing times or weights. However, the 

resulting value of the scheduing criterion may be 

higher than the original value of the scheduling 

criterion, wich is undesirable. Therefore we impose 

in this paper the constraint that the resulting value 

of the scheduling criterion based on the adjuted 

parameters should not be greater than the value of 

the scheduling criterion based on the original 

parameters.  

 

II. THEINVERSESCHEDULINGPROBLEMOFTHETOTALCOMPLETIONTIMEOBJECTI

VEONIDENTICALPARALLELMACHINES 

In the forward scheduling problem 
1

||
n

j

j

Pm C


 , consider an arbitrary  n -jobs  1 2, ,..., nJ J J  

should be processed by m parallel machines  1 2, ,..., mM M M . There are no precedence constraints between 

the jobs. Each job  1,2,...,jJ j n  has processing time  1,2,...,jp j n .  All jobs are available at time 

zero. For any schedules, assume that on machine  1,2,..., ,i iM i m n   jobs  
1,1 ,2 ,, ,...,i i i nJ J J   are 
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consecutively processed. So on machine  1,2,...,iM i m , the completion time of job s   is ,i sC   and the 

total completion time will be: 
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As we know it is well-known  Hongtruong Truong et al.  [2] proved following the result:  

 As schedule  1 2, ,..., nJ J J   is optimal for problem 
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In the inverse scheduling problem 
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where,    , 1,2,... , 0,1,2,..., 1 .n km h k h m      

The  problem
1
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Pm INV C
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 is solved by determining the minimum total adjustable perturbation to 
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the processing time  1 2, ,...,
T

np p p p  to become  1 2, ,...,
T

np p p p , so that the given schedule   

satisfies the necessary and sufficient conditions for optimality of the problem 
1

||
n

j

j

Pm C


 and becomes 

optimal with respect to  1 2, ,...,
T

np p p p . Thus, we can formulate the scheduling problem 
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 as a mathematical programming problem: 
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where jp  is the new minimally perturbed processing time of job  1,2,...,j j n .

 
For above inverse schedule problem, we have different models under three types of norms: 1l   norm, 2l   

norm, l  norm. 

1. The inverse problem 
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For 2l   norm, the formula (1) can be written as 
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Since  f p   is convex function and  | 0, 0D p Ap p     is convex set, the problem (3) is convex 

quadratic programming. So, its Kuhn-Tucker conditions (4) is the necessary and sufficient conditions for the 

optimal formula (3).
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By Wolfe algorithm of quadraticprogramming (D. Goldfar and A. Idnani [1]), we can easily solve of above 

Kuhn-Tucker conditions. Thus we can obtain the optimal solution of problem (2). 

2. The inverse problem 
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For 1l  norm, the problem (1) can be written as follows: 
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From (5) is a non-linear programming problem. 

Let 
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By (6), we have 
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Thus problem (5) is converted to the linear program as follows:  
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According to linear programming (7) we can obtain optimal solution 
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Similarly,  we can easily solve above linear programming. Thus, we can find j
p  from the formula
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III. CONCLUSION 
In this paper, we have summarized some research 

results on the inverse scheduling problem 
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