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ABSTRACT: This paper discusses Higher Order 

Compact Finite Difference Schemes and its 

application to Second-Order Linear Two-Point 

Boundary Value Problems with Dirichlet boundary 

conditions. Compact Finite Difference Schemes of 

order 4 and 6 were derived for the general Second-

Order Linear Two-Point Boundary Value Problems 

in Ordinary differential equations and the schemes 

were proven to be convergent. Numerical 

experiments were conducted on the Helmholtz 

equation (A special class of Second order ordinary 

differential differential) and several Second-Order 

ODEs with constant and variable coefficients. The 

compact Schemes derived were implemented using 

the Maple programming language, and the result 

obtained when compared with the Second-Order 

central difference scheme and Exact solutions 

showed that the CFDM is numerically accurate for 

all tested problems even at a step size of (h = 0:1) 

even when the central difference scheme failed to 

meet its Second-Order accuracy. 

KEYWORDS:Compact Finite Difference 

Schemes,Dirichlet boundary conditions, Ordinary 

differential equations. 

 

I. INTRODUCTION 
In the world of Mathematics, exact (or 

analytic) solutions do not always exist for some 

Initial or Boundary Value Problems in differential 

equations. It has thus been the goal of 

Mathematicians to develop methods that can 

generate Numerical solutions which approximates 

the exact/analytic solution to a reasonably high level 

of accuracy. For the past fifty years [9] three 

methods 'Finite difference method, Integral equation 

method, and Finite Element Method', have 

dominated the world of numerical 

techniques/methods for solving problems involving 

equations that is differential. Differential equations 

are being used as essential tools in Mathematical 

modelling of some physical systems such as wave 

propagation, heat flow, radiation transfer, diffusion, 

fluid dynamics, electromagnetism, elastic vibrations, 

population dynamics etc., [3] play a large role in 

Mathematical Modelling, hence in solving these 

problems, differential schemes based on first and 

second order widely use numerical methods because 

of the relative simplicity of their implementation. 

Achieving a more accurate solution requires a 

higher order finite difference for approximations of 

derivatives as against the finite difference schemes 

that is less accurate. The number of stencils/points 

used increases thus making the equation systems to 

be more complex as these stencils increases. 

The two most significant classes of 

techniques that are numerical used to solve 

differential equations that are partial are the element 

and difference methods. The finite difference 

method being preferred particularly for hyperbolic 

differential equation that is partial especially those 

that are quasi-linear and admit discontinuous 

solutions, has a few (major) drawbacks [6]. Derived 

difference schemes on irregular grids (or network) 

using Integral interpolation (or balance) methods 

were being the earliest work that studied the finite 

difference method on irregular grids (network) was 

proposed to simulate an electric network, and the 

schemes significantly reduced the geometrical error, 

and also provided an efficient and united approach 

in handling internal and natural boundary conditions 
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and this made a considerable advancement in the 

invention of finite difference methods. 

 

II. THE COMPACT FINITE 

DIFFERENCE METHOD (CFDM) 
The compact finite different 

quasilinearization method, for the first time, it uses 

the compact FD Schemes in both space and time to 

improve this method’s accuracy [5]. Studies a sub 

diffusion system that is fractional based on the 

fourth-order using a difference scheme, both 

compact and high-order. The compact finite 

difference scheme demonstrates a convergence that 

is high order [7]. The paper makes use of mixed 

derivatives together with linear second – order 

differential equations, Numerical test results showed 

numbers that do not contradict the order of accuracy 

with a high bonus (Reynolds), furthermore the study 

reflects the rate of convergence ranked at sixth-

order, a boundary condition refer to as Dirichlet and 

an auditory boundary (Robin) ranked at fifth-order 

[8]. 

The study solves both one and two 

dimensional using multigrid algorithm in 

combination with a higher-order compact finite 

difference scheme in a homogeneous Heimholtz 

equation. Findings from the research generated an 

accurate eighth-order approximation for grids. A 

pictorial illustration was exhibited to describe the 

eighth-order compact difference scheme accuracy 

and efficiency [4]. The study shows a pay-off that is 

not smooth for a convergence when pricing in 

models for stochastic volatility using a compact 

higher-order difference scheme [1].  

The paper proposed a technique 

(integration method), more precise for simulation 

numerically of paraboline equations. Findings 

revealed that both the exact equation and proposed 

scheme had the same results, also replica type of 

compact schemes, CFDS – PIM, SMM generated 

better computational efficiency and the accuracy 

computationally of CFDD – PIM was higher when 

compared to C-N scheme in one-dimensional 

example[2]. 

 

III. METHODOLOGY. 
Derivation of the Schemes  

Given the general form of a second order Linear two-point boundary value problem  
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Where h is the spatial size. We make use of the following notations   niunhxu   at ixx  then by 
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Then denoting the second order central difference approximation for first and second derivatives of the function 

 xu  by ixu  and ix u2 , where the central difference approximations ixu  and ix u2  are given as  
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Substituting the Taylor’s series expansion for 1iu  and 1iu  in (3) into (5) we have that  
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Substituting (8) and (9) into the boundary value problem (1) then we have  
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Where the term 1Err  is the truncation error and it’s given as  
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So that the error term 1Err  can be written as ...1 864  EEEErr
 

 

IV. THE CENTRAL DIFFERENCE SCHEME 

If we replace the terms ix u2 and ixu in the equation (10) by the terms in (5), and neglecting the error term 

 1Err  we obtain the following second order accurate central difference scheme.  
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and the coefficients iiii FCBA ,, are given as 
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V. THE FOURTH ORDER COMPACT SCHEME 
Thus to yield fourth order accuracy we only need to add the term E4 to the second order central difference 

scheme given in (12) i.e. from (11)  
    

12

2
432

4
iii

i

uubh
E


            (14) 



 

    
International Journal of Advances in Engineering and Management (IJAEM) 

Volume 4, Issue 2 Feb2022,   pp: 19-27www.ijaem.net    ISSN: 2395-5252 

 

 

 

 

DOI: 10.35629/5252-04021927             Impact Factor value 7.429  | ISO 9001: 2008 Certified Journal   Page 22 

The terms 
 3

iu  and 
 4

iu  are obtained by rearranging the equation (1) and differentiating repeatedly. Thus from 

(1) we have  
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Replacing the terms x and 
2

i in (16) with their definitions in (5) and neglecting the error term, we obtain the 

following Fourth order compact finite difference scheme given as  

iiiiiii FuCuBuA   11 ,  

1,...,3,2,1  Ni  (17) 

 

VI.THE SIXTH ORDER COMPACT SCHEME 
To obtain a sixth order accurate scheme, we write the new error term Err3 of the fourth order compact 

difference scheme  in the form Err3 = E6 + E8 + E10 + … Then following the same procedure as before we add 

only the term E6to the fourth order compact scheme, which will in turn produce a new error term to be used for 

compact difference schemes of higher order. Thus proceeding as before,  

        



















!4

2

!3!6

132
4

1

3

1

65

4

6
iiiii ukukuub

hE  

Using the same methods as before then the sixth order CFDM is given as;  

iiiiiii FuCuBuA   11 ,    1,...,3,2,1  Ni
             (18)

   

 

VII. APPLICATIONS 
Application to problems with constant coefficient 

 

 Problem 1:  

The Helmholtz equation   

The Helmholtz equations are in the description of physical phenomena, such as acoustic, electromagnetic waves, 

elastic, etc [10]. The one dimensional Helmholtz equation takes the form )()()( 211 xfxukxu  where k 

is a constant. Thus 

with
3

1
k and

xexxf  2)( , we have the following 

xex 2
,     1,0x  

 

With homogeneous boundary condition 

 u(0) = 0 , u(1) = 0 

Exact solution of problem 1 
 

 

 )()( 211 xukxu
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Figure 1: Plot of Distinct solutions for Problem 1 

 

162
10

9
9

3
cos

3
sin)( 2

21 

















xe
x

x
c

x
cxu



 

    
International Journal of Advances in Engineering and Management (IJAEM) 

Volume 4, Issue 2 Feb2022,   pp: 19-27www.ijaem.net    ISSN: 2395-5252 

 

 

 

 

DOI: 10.35629/5252-04021927             Impact Factor value 7.429  | ISO 9001: 2008 Certified Journal   Page 24 

 

 

 

 

 

 

Problem 2: 
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With homogeneous boundary condition 

U(0) = 0 , u(0) = 0 

Exact solution of problem 3 
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Figure 2: Plot of Distinct solutions for Problem 2 

 

Problem 3:
 

 4,0,1));1sin(ln(4

)()()1()(1 1112





xxx

xuxuxxux
 

With boundary condition     u(0) = 0 ,      u(4) = o 
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Exact solution of problem 4
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Figure 3: Plot of Distinct solutions for Problem 3 

 

VIII.DISCUSSION AND CONCLUSION 
The result obtained in problems I, 2 and 3 

in comparison with the central difference scheme 

based on second-order compact finite difference 

scheme and Exact solutions showed that the CFDM 

is numerically accurate for fourth order compact 

finite difference scheme and sixth order compact 

finite difference scheme for all tested problems even 

at a step size of (h = 0:1) even when the central 

difference scheme failed to meet its second-Order 

accuracy. This can be showed from figure 1, 2 and 3 

respectively. 

In view of the obtained numerical results above and 

comparison with exact solutions, the following 

conclusions were deduced; 

1. The schemes met the desired accuracy even at a 

mesh (step) size of  h = 0.1 for all problems. 

2. The accuracy order increases as the step size h  

decreases (i.e as 0h )  

3. The error obtained at each nodal point is  

roughly constant in size thus indicating 

numerically stable schemes. 

4. The experiments performed numerically 

whencompared with the exact solution 

clearlyreveals that the compact finite difference 

scheme greatlyexceeds the central difference 

scheme with a minimum accuracy of order 2 and 4 

for thecompact scheme of order 4 and 6 respectively 

5. Each new derivation from the Compact 

finite difference schemes exceeds the previous 

schemeby an accuracy of order 2, thus thecompact 
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finite difference schemes can beimproved to an 

arbitrarily large accuracy  

order 
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