

International Journal of Advances in Engineering and Management (IJAEM)
Volume 3, Issue 9 Sep 2021, pp: 104-107 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0309104107 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 104

Design of 16-bit multiplier for Posit data

format

Narayana M Hegde1 and Dr. Kiran V2

1
Student, Department of ECE, RV College of Engineering, Bangalore, Karnataka

2
Associate Professor, Department of ECE, RV College of Engineering, Bangalore, Karnataka

Submitted: 30-08-2021 Revised: 03-09-2021 Accepted: 05-09-2021

ABSTRACT:Multiplication is one of the most

commonly used operations of all the arithmetic

operations in various applications. In this paper, a

multiplier architecture for the posit number system

is proposed. Posit number system provides better

dynamic range and accuracy compared to floating-

point numbers (IEEE 754 standard) for the same

word size. The dynamic range and precision of

posits can be attributed to an exponent component

with run-time varying length. Due to these run-time

variations, hardware design is challenging. So, in

this paper multiplier for posits is constructed in

Verilog HDL.

KEYWORDS:Unum, Posit, Multiplier

I. INTRODUCTION
Posit is a new number system to represent

real numbers, proposed by Gustafson as a drop-in

replacement for the existing IEEE 754 standard. It

is the third revised version of Unum format after

type-1 and type-2 unums. It is claimed that posits

provide a larger dynamic range and higher

accuracy over the same word size. Also due to their

tapered decimal accuracy makes them attractive to

use in deep learning applications to reduce the

number of bits.

Posit number representation is closer to

the floating-point standard of representation of real

numbers compared to type-1 and type-2 Unum.

However, there is an extra field called regime along

with the exponent field. The general binary

representation format for posits is shown in fig 1. It

has four components: sign bit, regime, exponent,

and mantissa. The size of regime bits varies at run-

time, which makes both exponent and mantissa

vary at run time as well. These run-time variations

are what make posit provide dynamic range and

accuracy.

The value of a number represented in posit format

is given by

value = (−1)
sign bit

 × useed
regime

 × 2
exponent

 × (1 +

fraction)

where useed = 2
2es

The sign bit and regime field are always

present in the format. The bit-width of

mantissa(including implicit bit) can vary from 1-bit

to (N - ES)-bit, where N is the bit width of the posit

and ES is the bit-width of the exponent.

Fig. 1. Posit bit String format

II. MULTIPLIER ARCHITECTURE
In this section, the architecture of the posit

multiplier is presented.

The multiplier core consists of three main

processing units: posit extraction, multiplier core,

and posit packing.

A. Posit data unpacking

 The posit data extraction or unpacking

unit takes posit string as input and gives the four

fields of posit word as output. First, the operands

are checked for exception cases (ZERO and

International Journal of Advances in Engineering and Management (IJAEM)
Volume 3, Issue 9 Sep 2021, pp: 104-107 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0309104107 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 105

INFINITY). Posit word with all bits as 0 represents

zero and posit string with all bits 0 except the MSB

represents infinity

 The MSB of the posit word provides the sign of

the operand. If the operand is negative MSB is 1

else MSB is 0. For negative operand 2’s

complement is calculated and the now transformed

input operands (without sign bit) are used for

further calculations.

The MSB of the transformed operands is

used to calculate regime: 0 for the negative regime

and 1 for the positive regime. To do this it is

required to find the position of terminating regime

bit. Leading one detector is used to detect

terminating 1 in a sequence of 0s and a leading

zero detector is used to detect terminating 0 in a

sequence of 1s. This provides the run-time length

of the sequence (R). The regime value is R for a

sequence of 0 and R-1 for a sequence of 1.

After finding the regime value, the regime

sequence is removed by left shifting the operand by

R amount using a shifter. Now the exponent and

mantissa are aligned at the MSB of the operand. As

the exponent length is known, it is usedto extract

the exponent from the operand by left-shifting ES

times. The remaining bits are mantissa bits. The

data extraction algorithm flow is shown in fig 2.

Fig 2. Posit data extraction flow [6]

B. Multiplier Core

The posit extraction unit provides

operands in the form of sign bits (S1, S2), regime

check bits (RC1, RC2), regime sequence values

(R1, R2), exponent values (E1, E2), mantissas (M1,

M2) and infinity and zero checks (INF1, INF2, Z1,

Z2).

The sign bit of the product is S1 xor with

S2. Mantissas are multiplied using the (N-ES-2) X

(N-ES-2) multiplier. The output MSB is checked

for multiplication overflow. If there is overflow,

the mantissa is left-shifted by 1-bit and the final

exponent value is incremented by 1. The regime

values R1 and R2 are combined with respective

exponent values E1 and E2. The combined values

are added along with the overflow bit to obtain the

total combined exponent value. The output

exponent EO and output regime value RO are

calculated from the combined exponent.

The values from the multiplier core are passed to

the posit packing unit where posit is constructed.

C. Posit data packing unit

This unit packs the values from the

multiplier core into valid posit words. The sign bit

is as it is. The regime will consist sequence of 1s

for positive exponent and 0s for negative exponent.

The same sign bit can be used to terminate the

sequence. Next, the exponent value is appended to

the regime sequence. The mantissa is rounded and

International Journal of Advances in Engineering and Management (IJAEM)
Volume 3, Issue 9 Sep 2021, pp: 104-107 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0309104107 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 106

appended at the end. The final posit is the N-bit

output of the multiplier. The multiplier flow is

shown in fig 3.

Fig 3. Posit multiplier flow [6]

III. EXPERIMENT AND RESULT
The multiplier for posit is designed for N

= 16 and ES = 3 in Verilog HDL. Test vectors to

simulate multiplier are generated using python. The

test vectors are written to text files in binary format

which is then used by the testbench for simulation.

The simulator output is shown in fig 4.

Fig 4. Simulation Output

IV. CONCLUSION
In this paper, we designed a multiplier for

posit number format with posit bit-size as 16 bits

and exponent length as 3. The multiplier is

designed in Verilog and simulated using Cadence

NC-Verilog Simulator

REFERENCES
[1]. Anderson, M; Tsao, T-C; and Levin, M.,

1998, “Adaptive Lift Control for a Camless

Electrohydraulic Valvetrain,” SAE Paper

No. 98102

[2]. Ashhab, M-S; and Stefanopoulou, A., 2000,

“Control of a Camless Intake Process – Part

II,” ASME Journal of Dynamic Systems,

Measurement, and Control – March 2000

International Journal of Advances in Engineering and Management (IJAEM)
Volume 3, Issue 9 Sep 2021, pp: 104-107 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0309104107 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 107

[3]. Gould, L; Richeson, W; and Erickson, F.,

1991, “Performance Evaluation of a Camless

Engine Using Valve Actuation with

Programmable Timing,” SAE Paper No.

910450.

[4]. Schechter, M.; and Levin, M., 1998,

“Camless Engine,” SAE Paper No. 960581

[5]. INTERNATIONAL JOURNAL OF

ROBUST AND NONLINEAR CONTROL,

Int. J. Robust Nonlinear Control 2001;

11:1023}1042 (DOI: 10.1002/rnc.643).

[6]. M. K. Jaiswal and H. K. -. So, "PACoGen:

A Hardware Posit Arithmetic Core

Generator," in IEEE Access, vol. 7, pp.

74586-74601, 2019, doi:

10.1109/ACCESS.2019.2920936.

