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This study investigated the critical design
parameters of classical rectangular SSSS plate
under uniformly distributed lateral load. The study
used third order total potential energy functional
for isotropic rectangular thin plate with small
deflection, external work was substituted into the
third order total potential energy functional and the
general equation of a classical rectangular plates
under pure bending was obtained. The plate general
equation was minimized with respect to deflection
to obtain the equilibrium of forces governing
equation of thin rectangular plate. The resistant
forces were solved with Split-deflection approach
and the solution gave the general polynomial
deflection equation. Satisfying the boundary
conditions of SSSS plate with respect to the general
polynomial deflection equation gave the SSSS
plate deflection equation. The general polynomial
deflection equation was simplified and substituted
into the plate governing equation to obtain the
amplitude of deflection function, close integral was
performed on the shape function for SSSS
boundary conditions with respect to the general
stiffness equation, which gave the peculiar stiffness
and non-dimensional deflection coefficients of
SSSS plate. Limit state conditions, such as ultimate
limit state of stress (U < Ug)and serviceability
limit state of deflection (W, <W,) were
satisfied and the critical design parameters for
thickness (t.) and lateral imposed load (q;.)were
obtained. Numerical examples were performed
with the critical design equations and results were
presented for critical design thicknesses (t.)
suitable to withstand a given set of loads and
critical design imposed loads (qi.)a given
thickness can withstand for SSSS plate.

Keywords: Pure Bending, Critical
Thickness,Critical Impose Load,Limit State.

Notations: K: Stiffness of the material, o: Stress,
Oy: X axis stress, o,: y axis stress, o,: z axis stress,
Tyy: Y — X planer stress (shear stress in y — x plane),
g: Strain, g,: X axis strain, g,: y axis strain, g,: z
axis strain, y,, : y — X planer strain (shear strain in 'y
— x plane), L: Length of the material, E: Young
modulus of elasticity, V: Work, U: Internal (strain)
energy, D: Flexural rigidity of the plate, I1: Total
potential energy of the plate, t: Shear stress of the
plate, y: Shear strain of the plate, k,: Load
stiffness, k,: Material stiffness on x plane, kyy:
Material stiffness on x — y plane, k,: Material
stiffness on y plane, x: Primary axis of the plate.
That is the shorter of the two axes of the major
plane of the plate, y: Secondary axis of the plate.
That is the longer of the two axes of the major
plane of the plate, z: Tertiary axis of the plate. That
is the shortest of the three axes of the plate a:
Length of the primary dimension of the plate, b:
Length of the secondary dimension of the plate, t:
Thickness of the plate or the length of the tertiary,
w': The first derivative of the deflection in the x-
axis, w"y: The second derivative of the deflection in
the x-axis, A: Amplitude of the deflection function
(Coefficient of deflection), D: flexural rigidity of
plate, u: Poisson’s ratio of plate material, R: Non
dimension axis (quantity) parallel to x axis, A:
Amplitude of the equation (Coefficient of
deflection), h: Shape function, Q: Non dimension
axis (quantity) parallel to y axis, Wy,, : Maximum
deflection, W,: Allowable deflection, q: Applied
Load, ¢: Unit weight of material, U: Total strain
energy per volume, U,: Allowable total strain
energy per volume,
K.: Maximum deflection Coefficient, SLS:

Serviceability Limit State, ULS: Ultimate Limit
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State, SSSS:Four edges of the plate are simple
supported,

plate boundary conditions so as to obtain the
peculiar deflection equation of SSSS classical

h,.« : Deflected shape function at the center of the plate, giggtangular plate. With the non-dimensional total

Critical Imposed load for deflection limit state pure
bending analysis of rectangular classical plate, t.p:
Critical thickness deflection for limit state pure
bending analysis of rectangular classical plate, q; :
Critical Imposed load for elasticlimit state pure
bending analysis of classical rectangular plate, t.g:
Critical thickness for elasticlimit state pure bending
analysis of classical rectangular plate, q;.: Critical
Imposed load parameter, t.: Critical thickness
parameter.

l. INTRODUCTION

A plate is a structural component limited
by two parallel planes called faces, and a
cylindrical surface, called an edge. The division
between the plane appearances is referred to as the
thickness (t) of the plate, which it is common to
isolate the thickness into equivalent parts by a
plane parallel to its faces. This plane is known as
the center plane (or basically, the mid-plane),
where a and b are principal measurements, and t is
the thickness (Yamaguchi, 1999). Plate is one of
the continuum structure generally used in
buildings,  bridges, automobiles,  hydraulic
structures, pavements, containers, airplanes,
missiles, ships, instruments, machine parts, table
tops, street manhole covers, side panel, roof deck,
tank bottom and so forth. As indicated by the
definition applied to thin plate, the proportion of
the thickness (t) to the smaller span length (a)
should be less than 1/20 (Mansfield, 2005). We
shall consider only small deflections of thin plates,
which is a consistent magnitude of deformation
found in plate structure. It is expected, except if
generally indicated, that plate materials are
homogeneous and isotropic. A homogenous
material presents identical properties all through
and when the material is the same in all directions,
the material is called isotropic (Ventsel and
Krauthammer, 2001). The maximum deflection of
a laterally loaded plate has been obtained using the
split deflection method (lbearugbulem et al. 2016),
the maximum deflection was used to satisfy SSSS

potential energy functional of a classical
rectangular thin plate subjected to lateral load, the
amplitude of the deflection function of SSSS plate
was formulated.Also, we move further in getting
the stiffness of SSSS plate before the critical
parameter was solved. Satisfying the SLS of
deflection and ULS of elasticity, the critical design
parameters for Lateral impose load and thickness
was obtained, this equation was used in solving for
the critical lateral load a specified plate thickness
can withstand and also critical thickness for a
specified lateral load. From the literature, it has
been discovered that there is no exploration by past
researchers on the determination of critical design
parameters of classical rectangular plates under
uniformly distributed lateral load, a reason why the
results presented in this study represent a novelty
element brought by this research, which will be an
advantage for plate designs. With this research a
solution to critical load which a known plate
thickness can withstand and also the critical
thickness of a plate that can withstand a specified
loading, can be known under specified conditions
of operation.

II. THEORETICAL BACKGROUND

The study used Kirchhoff’s hypotheses on
total strain energy, work energy principle,
kinematics, stress deflection relationship and
constitutive relationship to derive the third order
total potential energy functional for isotropic
rectangular thin plate with small deflection,
external work was substituted into the third order
total potential energy functional and the general
equation of a classical rectangular plates under pure
bending was obtained. The plate general equation
was minimized with respect to deflection to obtain
the equilibrium of forces governing equation of
thin rectangular plates. The resistant forces were
solved with Split-deflection approach and the
solution gave the general polynomial deflection
equation.
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1. METHODOLOGY
The method used in this work is as presented below.
3.1 Deflection Function for (SS) Edge Condition (Simply Supported Edge)

~ — -
Z Z
~“ L~
~ _
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) -
Z z
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Figure 1: Representation of SSSS plate under lateral uniform load (a).
SS boundary conditions:
wrg(R=0)=0wg"(R=0)=0 1
WR(R = 1) = 0 WR” (R = 1)
=0 2
WQ(Q =0)=0 WQ” Q=0)
=0 3
WQ(Q=1)=0 Wq Q=1
=0 4

General orthogonal polynomial deflection equation of a plate is given by:
w = (ag + a;R + a,R? + a3R® + a,R*). (by + b;Q + b,Q? + b;Q?

+b,Q*Y) 5
Substituting the boundary conditions in Equations (1) to (4) into Equation (5) gives:
ay =0, a; =ay, a, =0, a3 = —2a4,by =0, by = by, b, =0, bs

= —234 6
Substituting Equations (6) into Equation (5) gives:

Wssss = az(R — 2R* + R*). b, (Q — 2Q°

+Q9 7
Equation (7) is the Peculiar Deflection Function for SSSS Plate
When,
A=a,.b,8

h=(R—-2R3+R").(Q—-2Q%+Q"9

3.2Stiffness Coefficient for SSSS Classical Rectangular Plate.

From Equation (7), (8) and (9) gives:

Wssss

= Ah 10
When,

A= Amplitude of the deflection function (Coefficient of deflection)

h = Shape function

The non-dimensional third order total potential energy functional of a classical rectangular thin plate subjected
to lateral load was formulated by Adewale in his master’s degree thesis and presented as in Equation (11)

j f d3Ah aAh 2  83Ah 8Ah+ 1 8°Ah 90Ah
9R3 o<2'aRaQ2' OR ot 9Q3 " aQ
0 Y0

Differentiating Equation (11) with respect to(A) and equating to zero gives maximum value of A
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DAflfl 0h oh 2 0°h oh 1 &°h oh) 4f1f1haa _, 0
o Jo \GR? 9R " xZ'9RAQZ OR ' «* aQ3 aQ)RoQ T ) ) MR T
1,1
qa4(f0 f h)aRaQ
93h oh 2 a3h dh 1 d3h oh
f fO (0R3 R ocz'aRaQZ'ﬁ'{'oc‘l 2Q3" aQ) Or 0o

Equation (13) can be written as shown in Equation (14)

13

a* k
A =qT — 14
ky +§kxy +Qky

Where,
kq —J- f h 0r0dy (Load stif fness) 15

—Jjaashahaa(Mt [st X direction)16

= 3R% 3R 2”9 aterial stif fness in X direction
k jaaah ahaa Mat st direct 17
xy = . ). araq? 3R r0¢ (Material stif fness in x — y direction)
k—f aahahaa(Mt st direction)18
y = . ). 30530 r0g(Material stif fness iny direction
Equation (14) can be written as shown in Equation (19)

qa*
A= o K 19
Where K is the total stiffness given by:

k

K= 1 20

2 1
ke + Sy + =k,

3.3 Determination of the Coefficient of Deflection (A)

The stiffness coefficient of SSSS classical rectangular plate from Equation (15) to Equation (18) can be
solved by definite integration of the shape functions deflection (h)in Equation (9) from 0 to 1. Kq Ky Kyy and
Kyare respectively 0.04, 0.2361904762, 0.235918 and 0.2361904762.

Substituting the values of the coefficients Ky K, Ky and Kyinto Equation (14) gives:
qa* 0.04

A=— 21
D \0.2361904762 + %0.235918 + %0.2361904762

3.4Determination of Critical Design Parameters of Classical Rectangular Plates under
Uniformly Distributed Lateral Load

3.4.1  Serviceability Limit State of Deflection Pure Bending Analysis of Classical Rectangular Plate
From Deflection Limit State which states that the maximum deflection is less than allowable deflection and this
can be mathematically written as:

Woae < W, 22

When,

Wi = Maximum deflection

W, = Allowable deflection

Substitution of Equation (19) into Equation (9) gives:

) 23
Y=

For maximum deflection Equation (23) can be expressed as:

4
qa
K. hpay 24

Wmax = D

When,
hnex = The point of maximum stress of a lateral loaded classical plate and this occurs at the center of the plate.
Substituting Equation (24) into the deflection Limit state condition in Equation (22) gives:
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 K.hpa <W, 25

3.4.1.1 Determination of Critical Imposed Load for Deflection Limit State Pure Bending Analysis of
Classical Rectangular Plate
Solving for the critical lateral loading from Equation (25) gives:

< Wa D 26
1<% Rpax -a*
D =Fl L ridgity of the plate = t.E 27
= Flexural ridgity of epae—lz(l_ﬂz)
Substituting Equation (27) into Equation (26) gives:
W,.t3.E
q < 28

K. Ry -a* .12 (1 — p?)
From Euro code 1 EN 1991-1-1 andMccormac et al, (2012, 2014),
Ifg=qs+q.= q +(¢.1) 29
When,
q = Applied load; q; = Imposed Load; t = Thickness of the plate; q, = Dead load
¢ = Unit weight of material
Substituting Equation (29) into Equation (28) gives:

w,.t3.E . 20
Kb aizd— @9

q; <

Let

1
_ 31
%= Tox, R

Rewriting Equation (31) gives:
<0 Wt B t 32
Qicp 19t (1= ) (p.0)
3.4.1.2 Determination of Critical Thickness for Deflection Limit State Pure Bending Analysis of
Classical Rectangular Plate
From Equation (28) the critical thickness (t.p) equation can be derived when the load is known and it’s given
as:
q.-K.hpgy -a* 12 (1 — p?)
wW,.E
Solving for the critical thickness from Equation (33) gives:

N 3\/q.1{. By -t 12 (1 — u2)

< t3 33

34
W,.E
Let
?;

= 312.K.hye 35
Rewriting Equation (35) gives:
th
4 1— 2) %
>0, (M_ﬂ> 36
W,.E
Equation (32) is the critical imposed load equation(g;.p ), a classical rectangular plate thickness can withstand at
specified thickness and deflection.
Equation (36) is the critical thickness equation (t.p) of the rectangular plate, such that it can carry a specified
lateral load at a specified deflection.
3.4.2  Ultimate Limit State of Stress forPure Bending Analysis of Classical Rectangular Plate
From Elasticity theory according to Ibearugbulem (2017), the strain energy limit state is stated as:
(U < Up) 37
Where,

U = Total strain energy per volume; U, = Allowable total strain energy per volume
This is done in line with the work of Ibearugbulem (2017), allowable total strain energy is:
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1
E(sz + Uyz + eryz + Z,u(’[yxz - O'yO'x))

Ez

< b 38
Simplifying Equation (38) gives:
(axz + O'yz + Z‘L'xyz + ZM(Tyxz - ayax))

<f* 39
Let the ratios relating o, , o), and ., be given as:
g, = N0y 40
Tyy = N0y 41

Substituting Equation (40) and Equation (41) into Equation (39) gives:
O-XZ + (nlax)z + Z(nzax)z + 2#((”20-75)2 - (nlox)ax) < fyz42
Rearranging Equation (42) Taking Square root gives:

O-X
fy

<
VA + ()% + 21,7 + 2uny? — 2un,)
Equation (43) can be called critical stress.
From Equation (40) and Equation (41) can rewritten as:

43

O,

ny =2 44
Oy
T

n, = = 45

O—X
The solution of stresses acting on a classical rectangular thin plate is given as:

—zE *w 9w
Oy + 46

12 K dy?  0x?
—zE ’w  9*w
BT (M ox? " 6y2>47
. —zE(1—p) 9*w

O (1-p?) ayox
Substituting w = Ah, the dimensionless coordinates x = aR, y = bQ, aspect ratio oc = b/a into the stress solution
in Equation (46) to Equation (48)

—zEA 0%h 0%h
g, = 12 ) (um+—“2 6Q2> 49
—zEA 9%h

1— 2 (“ o2 902

+ oh 50
oR?

g, =

Tyx

B —zFEA(1—p) 9%h

T (1-p?) "« 0RAQ

Substituting Equation 49, 50 and 51 into Equation 44 and Equation 45 gives:
ny

9%h 92h
B (5 + _«ZaQZ)

- 92h 92h
('“_ocZaQZ + m)

n;

51

52

2h
(1- 'u)'ocaRaQ

=)

Let the second derivative of the shape function stresses be denoted as:
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- 54

=— 55

56

~ 9RAQ
Substituting Equation (54), (55), and Equation (56) into Equation (52) and Equation (53) gives:
ny
1
(12 +9,,)
= — 57
(“E‘Dyl + ‘le)
n;
1
_ (11_ ,u)-;¢xy1 58
('uoc_zd)h + (p"l)
Substituting Equation (57) and Equation (58) into Equation (43), so the critical stress can be rewritten as:

0, < 2 59
by 50, \? (1-p)ie 2 a-wie 2 By
1+ HPx 1T 2Py +2 1) Pxy ¢ +2[,l 1) Pxy ¢ —2[,{ M1X1;Zy1
u;ZI Dy Dy y;zI Dy by y;zi Dy g (nz®y +x1)
Let
n

2 2 2
1 1 1 1
Ky + 2 Py, ) (1= w.2 Py, "y (1-w. Py ub,, + P,

1 1 U 1 —_ Z‘U 1
”;d)yl-l_d)xl .u-oc_z('pyl"l'd)xl .u-o(_zd)yl"l'd)xl (#oc_z¢y1+(px1)
Substituting Equation (60) into Equation (59) gives:

Jx

5

n
Substituting Equation (54) and Equation (55) into Equation (50) gives:
O-X

< 61

—zEA d)yl
= 1 5 U—
—u

o2
+ cpxl) 62

Substituting Equation (62) into Equation (61) gives:

—ZEA (Dyl
1_—uz<"—+ Py

A

< 63
n
Substituting Equation (19) and mid plane Z=t/2into Equation (63) gives:
1
—t.E.q.a" K .(u 0, + )
2.D.(1—pu?)

Sf—y64
n

Substituting Equation (27) and Equation (29) into Equation (64) gives:
fy 2.1 —u?)
1

—6.K. n.(1—p2).a* (ud, + )

g+ (p.t) < 65

Let
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9?3
1
“ 6K 66
Substftuting Equation (66) into Equation (65) to get the critical imposed lateral load and this gives:
@s.f, .t?
Qice = z

—(p.t)67
n .a* .(u%dlyl + <Dx1)
3.4.2.3 Determination of Critical Thickness for Elastic Limit State Pure Bending Analysis of Classical
Rectangular Plate
From Equation (64) the critical thickness (t.z) can be derived when the load is known and it’s given as:

- 4+ (L _ 2
2 l1.q.n.a '(“x2¢y1+(p"1)'12(1 us). k
c

- fy-2.(1—u?) 68

Let,
Dy
1
= (6.k)2 69
Substituting Equation (69) into Equation (68) to get the critical thickness and this gives:
QE
1
1
—-1.q. n.a4.(u§¢y1 + <I>x1) :
£y

Equation (67) is the critical imposed load equation(g;.z), a classical rectangular plate thickness can withstand at
specified thickness and material strength.

Equation (70) is the critical thickness equation (t.;) of classical rectangular plate such that it can carry a
specified lateral load at a specified material strength.

Equations of critical design parameters of classical rectangular plates under uniformly distributed lateral load
are:

=0, 70

w,.t3.E
Qicn<¢1m
—@.t 71
th
4(1 2) %
qg.a*(l—pu
> —_— 72
®2< W, )
@s.f, .t?
Qice < 4 f
n.a '(“§¢y1+d)"1)
—(¢.0) 73
tcE
1
_ 4 (X 2
- l.q.n.a .(ux2¢y1+¢x1) 24

Iy

3.4.3  Determination of Maximum Stress Coefficient for SSSS Boundary Conditions.

The point of maximum stress for a classical rectangular plate under uniformly distributed lateral load occurs at
the center of the plate and this can be mathematically represented as:

hmax OCCUrs at (R = Q = 0.5).

3.4.3.1 Maximum Stress Coefficient for SSSS Classical Rectangular Plate

From Equation (9), the shape function of SSSS plate is given as

h=((R—-2R*+R".(Q—2Q%+Q"Y)

hnax = ((0.5 = 2(0.5)° + 0.5%).((0.5 — 2(0.5)* + 0.54)) )

= 0.0977 75
Substituting Equation 9 into Equation 55 gives:
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9%h
@, =—=12(0.5% — 0.5)(0.5 — [2 * 0.53] + 0.5%)

76

17 9gR2
= —0.9375
Substituting Equation 9 into Equation 56 gives:
d%h
Dy, = R0 =(1—-[6+0.52]+[4*0.53])(1 — [6 % 0.52] + [4 % 0.5%])

= 0.0000

Substituting equation 9 into Equation 54 gives:
2

9%h
®, =——=12(0.5% - 0.5)(0.5 — [2 * 0.5°] + 0.5%)

y1 aQ
= —0.9375

Numerical Examples

78

Numerical examples were performed using the critical design (limit) parameters listed in Equation (71),
Equation (72),Equation (73) and Equation (74), and the parameter used for this example are as follows in Table

Table 1: Parameters for Numerical Examples

SYMBOLS VALUES
E 207 x 10° N/m?
M 0.3
o 77 kN /m?
A 1m
£y 250N/mm?, 415N/mm?,
W, 5mm, 10mm, 15mm
T 5mm, 10mm, 15mm, 20mm
b 1,15,2
*Ta
q 50kN, 100kN, 150kN, 200kN

V. RESULTS AND DISCUSSION

For critical lateral imposed load numerical
studies, plate thicknesses of 5mm, 10mm, 15mm,
20mm were considered. The specified deflections,
material  strength, physical and geometric
properties above and Table 2 were substituted into
the critical lateral imposed load equation for
serviceability limit state of deflection (q;.p) in
Equation (71) and also the critical lateral imposed
load equation for ultimate limit state of stress (q;.z)
in Equation (73). Results of this substitutions with
respect to the considered aspect ratios in the
numerical examples parameters gave the critical
lateral imposed load from Table 3 to Table 4 and
Table 5, choosing the lesser load between the
deflection and the stress loads of a specified plate
thickness, aspect ratio and boundary condition.
This load is said to be the critical lateral imposed
load the plate thickness can withstand without
failure and also satisfying the design limit state
conditions.

For critical thickness numerical studies,
lateral loads, 50kN, 100kN, 150kN and 200kN
were considered. The specified deflections,
material ~ strength, physical and geometric
properties above and Table 2 were substituted into
the critical thickness equation for serviceability
limit state of deflection (t.p) in Equation (72) and
also the critical thickness equation for ultimate
limit state of stress (t.z) in Equation (74). Results
of this substitutions with respect to the considered
aspect ratios in the numerical examples parameters
were tabulated on Table 6, Table 7 and Table 8 and
the critical thicknesses was selected choosing the
larger thickness between the deflection and the
stress thicknesses of a specified loads intensity,
aspect ratio and boundary condition. This thickness
is said to be the critical classical plate thickness
that can withstand the specified lateral load
intensity without failure and also satisfying the
design limit state conditions.
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Table 2
b | Stiffness ( ?4 @, B3 Dy Value on n
a=- K with

Poisson’s
ratio, u =
0.3

1.0 0.042363 | 20.13427 | 0.367582 -3.9342 0.50416 2.6

15 0.08121 10.50303 | 0.456627 -2.0523 0.69804 1.8256

2.0 0.108427 | 7.866585 | 0.502811 -1.5371 0.80658 1.5687

4.15.3 Critical Lateral Imposed Loads for Classical Rectangular Plates

Table 3: Critical lateral imposed loads for SSSS classical rectangular plate on aspect ratio of 1, under

specified allowable deflections, thicknesses and material strengths.

Critical lateral imposed loads (q;. )
t(mm) ) b
Aspect ration <= p =1
W, = 5mm £, =250N/mm’ dic (kN) | W, =5mm £, =415N/mm’ Qe (
kN)
5 2.4775 7.37484 2.4775 2.4775 12.4963 2.47
10 22.13 30.2694 22.13 22.13 50.7553 22.1
15 76.1324 68.6835 68.6835 | 76.1324 114.777 76.1
20 181.66 122.617 122.617 | 181.66 204.561 181.
t(mm) | W,=10mm | £,=250N/mm’ qic KN) | Wy =10mm | £,=415N/mm’ 0ic (
kN)
5 5.33999 7.37484 5.33999 | 5.33999 12.4963 5.33
10 45.0299 30.2694 30.2694 | 45.0299 50.7553 45.0
15 153.42 68.6835 68.6835 | 153.42 114.777 114.
20 364.86 122.617 122.617 | 364.86 204.561 204.
tmm) | W,=15mm | £,=250N/mm’ qic KN) | Wy =15mm | £,=415N/mm’ Qe (
kN)
5 8.20249 7.37484 7.37484 | 8.20249 12.4963 8.20
10 67.9299 30.2694 30.2694 | 67.9299 50.7553 50.7
15 230.707 68.6835 68.6835 | 230.707 114.777 114.
20 548.059 122.617 122.617 | 548.059 204.561 204.

Table 4: Critical lateral imposed loads for SSSS classical rectangular plate on aspect ratio of 1.5, under specified

allowable deflections, thicknesses and material strengths.

Critical lateral imposed loads (g;. )
t(mm b
(mm) Aspect ration x= o= 1.5

W, = 5mm £, =250N/mm’ gic (KN) [ W, =5mm £,=415N/mm’ | g, (kN)
5 1.10822 6.22784 1.10822 1.10822 10.5923 1.10822
10 11.1758 25.6814 11.1758 11.1758 43.1393 11.1758
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15 39.1619 58.3606 39.1619 | 39.1619 97.6408 39.1619
20 94.0261 104.265 94.0261 | 94.0261 174.097 94.0261
tmm) [ W,=10mm | f£,=250N/mm’ Gic kKN) | Wy =10mm | £,=415N/mm’ | g;. (kN)
5 2.60144 6.22784 2.60144 | 2.60144 10.5923 2.60144
10 23.1215 25.6814 231215 | 23.1215 43.1393 23.1215
15 79.4789 58.3606 58.3606 | 79.4789 97.6408 79.4789
20 189.592 104.265 104.265 | 189.592 174.097 174.097
(mm) | W,=15mm | f,=250N/mm’ qic kN) | Wo=15mm | £,=415N/mm’ | g;. (kN)
5 4.09466 6.22784 4.09466 | 4.09466 10.5923 4.09466
10 35.0673 25.6814 25.6814 | 35.0673 43.1393 35.0673
15 119.796 58.3606 58.3606 | 119.796 97.6408 97.6408
20 285.158 104.265 104.265 | 285.158 174.097 174.097

Table 5: Critical lateral imposed loads for SSSS classical rectangular plate on aspect ratio of 2, under specified
allowable deflections, thicknesses and material strengths.

Critical lateral imposed loads (g, )

t(mm) ) b
Aspect ration x= == 2

W, = 5mm £, =250N/mm’ gic KN) | W, =5mm £, =415N/mm’ | q;. (kN)
5 0.7334 5.69159 0.7334 0.7334 9.70215 0.7334
10 8.17716 23.5364 8.17716 | 8.17716 39.5786 8.17716
15 29.0417 53.5343 29.0417 | 29.0417 89.6293 29.0417
20 70.0373 95.6855 70.0373 | 70.0373 159.854 70.0373
tmm) | W,=10mm | f,=250N/mm? Qic KN) | Wo=10mm | £,=415N/mm® | q;. (kN)
5 1.85179 5.69159 1.85179 | 1.85179 9.70215 1.85179
10 17.1243 23.5364 17.1243 | 17.1243 39.5786 17.1243
15 59.2383 53.5343 53.5343 | 59.2383 89.6293 59.2383
20 141.615 95.6855 95.6855 | 141.615 159.854 141.615
t(mm) | W, =15mm | f,=250N/mm? Qic (kN) | Wo=15mm | f,=415N/mm* | g (kN)
5 2.97019 5.69159 2.97019 | 2.97019 9.70215 2.97019
10 26.0715 23.5364 235364 | 26.0715 39.5786 26.0715
15 89.435 53.5343 53.5343 | 89.435 89.6293 89.435
20 213.192 95.6855 95.6855 | 213.192 159.854 159.854

4.1.5.4 Critical Thicknesses for Classical Rectangular Plates
Table 6: Critical thicknesses for SSSS classical rectangular plate on aspect ratio of 1, under specified allowable
deflections, lateral imposed loads and material strengths.

Critical thicknesses (t.)
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kN b

a(kN) Aspect ration x= o= 1
W, = 5mm f,=250N/mm’ | t.(m) W, = 5mm f,=415N/mm’ | t.(m)

50 0.01297 0.01269 0.01297 0.01297 0.00985 0.01297
100 0.01635 0.01795 0.01795 0.01635 0.01393 0.01635
150 0.01871 0.02198 0.02198 0.01871 0.01706 0.01871
200 0.02059 0.02538 0.02538 0.02059 0.0197 0.02059
q(kN) | W,=10mm | f,=250N/mm* | t.(m) W, =10mm | f,=415N/mm* | t.(m)
50 0.0103 0.01269 0.01269 0.0103 0.00985 0.0103
100 0.01297 0.01795 0.01795 0.01297 0.01393 0.01393
150 0.01485 0.02198 0.02198 0.01485 0.01706 0.01706
200 0.01635 0.02538 0.02538 0.01635 0.0197 0.0197
q(kN) [ Wy =15mm | f,=250N/mm’ | t.(m) W, =15mm | f,=415N/mm* | t.(m)
50 0.009 0.01269 0.01269 0.009 0.00985 0.00985
100 0.01133 0.01795 0.01795 0.01133 0.01393 0.01393
150 0.01297 0.02198 0.02198 0.01297 0.01706 0.01706
200 0.01428 0.02538 0.02538 0.01428 0.0197 0.0197

Table 7: Critical thicknesses for SSSS classical rectangular plate on aspect ratio of 1.5, under specified

allowable deflections, lateral imposed loads and material strengths.

Critical thicknesses (t.)
kN
a(kN) Aspect ration «x= o= 1.5
W, = 5mm f,=250N/mm? t.(m) W, = | £,=415N/mm’ | t.(m)

5mm

50 0.01612 0.01375 0.01612 | 0.01612 | 0.01067 0.01612

100 0.02031 0.01944 0.02031 | 0.02031 | 0.01509 0.02031

150 0.02324 0.02381 0.02381 | 0.02324 | 0.01848 0.02324

200 0.02558 0.0275 0.0275 0.02558 | 0.02134 0.02558

qkN) [ W,=10mm | f,=250N/mm’ t.(m) W, = | £,=415N/mm’ | t.(m)
10mm

50 0.01279 0.01375 0.01375 | 0.01279 | 0.01067 0.01279

100 0.01612 0.01944 0.01944 | 0.01612 | 0.01509 0.01612

150 0.01845 0.02381 0.02381 | 0.01845 | 0.01848 0.01848

200 0.02031 0.0275 0.0275 0.02031 | 0.02134 0.02134

qkN) | Wy=15mm | f,=250N/mm’ t.(m) W, = | f,=415N/mm’ | t.(m)
15mm

50 0.01117 0.01375 0.01375 [ 0.01117 | 0.01067 0.01117

100 0.01408 0.01944 0.01944 [ 0.01408 | 0.01509 0.01509

150 0.01612 0.02381 0.02381 | 0.01612 | 0.01848 0.01848

Table 8: Critical thicknesses for SSSS classical rectangular plate on aspect ratio of 2, under specified allowable
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Critical thicknesses (t.)
kN b
G(kN) Aspect ration o(:;: 2
W, = 5mm f,=250N/mm? t.(m) W, = | £,=415N/mm | t.(m)
5mm 2
50 0.01775 0.01434 0.01775 0.01775 0.01113 0.01775
100 0.02236 0.02028 0.02236 0.02236 | 0.01574 0.02236
150 0.02559 0.02484 0.02559 0.02559 0.01928 0.02559
200 0.02817 0.02869 0.02869 0.02817 0.02226 0.02817
qkN) | W,=10mm | f,=250N/mm’ t.(m) A = | £,=415N/mm | t.(m)
10mm 2
50 0.01409 0.01434 0.01434 0.01409 0.01113 0.01409
100 0.01775 0.02028 0.02028 0.01775 0.01574 0.01775
150 0.02031 0.02484 0.02484 0.02031 | 0.01928 0.02031
200 0.02236 0.02869 0.02869 0.02236 0.02226 0.02236
qkN) | W,=15mm | f,=250N/mm’ t.(m) W, = | £,=415N/mm | t.(m)
15mm 2
50 0.0123 0.01434 0.01434 0.0123 0.01113 0.0123
100 0.0155 0.02028 0.02028 0.0155 0.01574 0.01574
150 0.01775 0.02484 0.02484 0.01775 0.01928 0.01928
200 0.01953 0.02869 0.02869 0.01953 | 0.02226 0.02226
CONCLUSIONS Split Deflection Method of Classical
Based on the research results obtained Rectangular Plate Analysis. International
from this present study, the boundary conditions, Journal ~ of Scientific and Research
aspect ratios, allowable deflections and material Publications, Volume 6, Issue 5, ISSN 2250-
strength plays a significant effect on the critical 3153. pp. 147-150. o
lateral imposed load and critical thicknessof [5]. llesanmi. A. (2022). Determination of
classical rectangular plate. Critical Design Parameters of Classical
The critical design parameters tables Rectangular ~ Plates  Under  Uniformly
gic and t, herein are very reliable and can be used Distributed Lateral Load. MENG Thesis
in the determination of suitable plate thickness submitted to the post graduate school,
from a specified lateral load and also the critical Federal University of Technology Owerri,
lateral imposed load a specified plate thickness can Nigeria.
withstand, under specified condition of operations. [6]. Mccormac, J., Stephen, F. C. (2012).
Structural steel design, Fifth Edition.
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