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ABSTRACT: The equation   (A∇4 + B∇2 + C)  χ = 

0 with matrix coefficients A, B, C is studied for 

homogeneous boundary conditions. An integral 

constraint is derived for the above system leading to 

a relationship between the matrix involved. As a 

consequence, results are obtained for double-

diffusive convection problem coupled with cross-

diffusions   for Veronis’ and Stern’s type 

configurations.  
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I. INTRODUCTION 
The stability properties of binary fluids are 

quite different from pure fluids because of Soret and 

Dufour effects [1, 2]. An externally imposed 

temperature gradient produces a chemical potential 

gradient and the phenomenon known as the Soret 

effect, arises when the mass flux contains a term 

that depends upon the temperature gradient. The 

analogous effect that arises from a concentration 

gradient dependent term in the heat flux is called the 

Dufour effect. It is now well established fact that the 

thermosolutal and Soret-Dufour problems are quite 

closely related, in fact, they are formally identical 

and identification is done by means of a linear 

transformation that takes the equations and 

boundary conditions for the latter problem into those 

for the former. The analysis of double diffusive 

convection becomes complicated in case when the 

diffusivity of one property is much greater than the 

other. Further, when two transport processes take 

place simultaneously, they interfere with each other 

and produce cross diffusion effect (Dufour-Soret 

effects).  The Soret and Dufour coefficients describe 

the flux of mass caused by temperature gradient and 

the flux of heat caused by concentration gradient 

respectively. The coupling of the fluxes of the 

stratifying agents is a prevalent feature in 

multicomponent fluid systems. In general, the 

stability of such systems is also affected by the 

cross-diffusion terms. Generally, it is assumed that 

the effect of cross diffusions on the stability criteria 

is negligible. However, there are liquid mixtures for 

which cross diffusions are of the same order of 

magnitude as the diffusivities. There are only few 

studies available on the effect of cross diffusion on 

double diffusion convection largely because of the 

complexity in determining these coefficients. The 

effect of Soret coefficient on the double–diffusive 

convection has been studied by [3]. They have 

reported that the magnitude and sign of the Soret 

coefficient were changed by varying the 

composition of the mixture. The problem of Dufour-

driven thermosolutal convection has also been 

considered by [4] and results concerning the linear 

growth rate and behavior of oscillatory motions 

have been established. 

  Bounds to eigenvalues of ordinary 

homogeneous system are a problem of interest for 

their own sake and assume added significance when 

these systems represent physical situations and the 

eigenvalues are not exactly obtainable [Warren [5]]. 

The method of quadratic forms is a familiar device 

which often succeeds in characterizing the 

eigenvalues and establishing the bounds, and an 

important application of this occurs in a certain class 

of hydrodynamics stability problems [see, for 

example, Chandrasekhar [6] and Lin [7].There is a 

basic similarity of approach in all these cases 

,namely.” Multiplying the governing equation by the 

conjugate eigenfunction and integrating the resulting 

equation over the range of the boundary conditions,” 
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but apart from this each case is treated as a 

particular problem and the various other steps taken 

in any two cases often appear ad hoc and unrelated. 

The question that naturally emerges is the following: 

Can a unified mathematical treatment be given to 

the above class of problems wherein the basic 

content of the method of quadratic forms is retained 

while its ad hoc nature (in the context of the above 

mentioned applications) is removed. 

 In the present paper we show that a 

generalized biharmonic equation with matrix 

coefficients and homogeneous boundary conditions 

provides the basis for the unified approach for a 

subclass of the above class of problems such that in 

any two cases the application differs only in the 

choice of the matrices involved. As a consequence, 

known as well as unknown results are obtained for 

double-diffusive convection coupled with cross-

diffusions in case of Veronis’ and Stern’s type 

configurations[8,9]. 

 

II. FORMULATION AND RESULTS 
          Consider the coupled system of n linear 

homogeneous partial differential equations 

 A∇4 + B∇2 + C x  χ x = 0,               (1) 

in  a simply connected open subset V of the 

Euclidean space Rm ; x refers to the point 
 x1 , x2  ,…… . xm  of V; A and B are n × n matrices 

with complex constant entries; C(x) is an n × n 

matrix with complex valued functions on V as 

entries; ∇2k stands for the operator 

   ∂2 ∂xi
2  m

i=1  k , k = 1 , 2;  χ(x) is the column 

vector  χi (x) n×1  , χi(x) being complex valued 

functions on V and ∇2kχ(x) ≡  ∇2kχi(x) 
n×1

. 

We consider equation (1) together with 

homogeneous boundary conditions 

χ x = 0 and either A
∂χ(x)

∂n
= 0 or A∇2χ x 

= 0,      (2) 
on the boundary S of V. Here A ∂χ ∂n   and A∇2χ 

stand for the vectors 

  Aij ∂xj ∂n  n
j=1  

n×1
and  Aij∇

2χj
n
j=1  

n×1
, 

respectively, and ∂ ∂n  denotes the differentiation 

along the positive outward drawn normal at any 

point on S. Henceforth, we shall use the summation 

convection for repeated indices unless stated 

otherwise. 

In Section 3, a necessary condition for the 

existence of a non-trivial solution χ(x) of equations 

(1) and (2) is obtained in the form of an integral 

relation involving the solution, which is then 

specialized to a form more suited to applications. 

The integral relation yields an inequality between 

the eigenvalues of the matrices involved and has no 

explicit dependence on the solution. 

In Section 4, the above results are shown to lead to 

the following consequences in the field of 

hydrodynamic stability: 

That the complex growth rate p = pr + ipi  of an 

arbitrary oscillatory perturbation, neutral or 

unstable, in the linear stability problem of 

thermohaline convection (Veronis′/Stern’s 

configuration) with dynamically free or rigid 

boundaries, must lie in an open disk in the right half 

of the prpi-plane with centre as origin and 

 radius 2 = R′
Sσ/−RT

′ σ , 
where R′S  is the modified  salinity Rayleigh number, 

RT
′  is the  modified thermal Rayliegh number and σ 

is the Prandtl number (Banerjee et al. [10]).  

 

III. MATHEMATICAL ANALYSIS 
Lemma 1: If a solution χ satisfying equations (1) and (2) exists then we have 

  ∇2χ †A1 ∇
2χ dV

V

−   grad χ †B1 grad χ dV +  χ†C1 x χdV = 0,         (3)
VV

 

where  

A1 =
A − A†

2i
 ,   B1 =

B − B†

2i
  ,   C1 x =

C(x) − C†(x)

2i
  , 

grad χ =  grad χi n×1 and the grad operator is in Rm , and the symbols † and * stand for the complex conjugate 

transpose and complex conjugate, respectively, so that the second term on the left hand side of equation (3), for 

example, stands for   ∂χii ∂xj  
∗
 B1 ik ∂χk ∂xj  dV

V
. 

Proof: Multiplication of equation (1) to the left by χ† and integration over the domain V gives 

 χ†A∇4χdV +  χ†B∇2χdV +  χ†C(x)χdV
V

= 0.          (4)
VV

 

Now, 

 χ†A∇4χdV =  χi
∗Aij∇

4χjdV = Aij  χi
∗∇2 ∇2χj dV,      (5)

VVV

 

and making repeated use of Gauss′ theorem in Rm  and boundary conditions (2), we get 
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Aij  χi
∗∇2 ∇2χj dV = Aij  χi

∗
∂

∂n
 ∇2χj ds − Aij  grad χi

∗. grad  ∇2χj dV
VSV

 

= −Aij  grad χi
∗. grad  ∇2χj dV

V

 

= −Aij  ∇2χi

∂

∂n
 χi

∗ ds + Aij  ∇2χi∇
2χi

∗dV
VS

 

= Aij  ∇2χi∇
2χi

∗dV =   ∇2χ †A ∇2χ dV  ,                                    (6)
VV

 

the symbol “.” is the dot product. Similarly, we have 

 χ†B∇2χdV = −  grad χ †B grad χ dV  .                   (7)
VV

 

Using equations (5) – (7), we have from equation (4) 

  ∇2χ †A ∇2χ dV −   grad χ †B grad χ dV +  χ†C x χdV = 0   .       (8)
VVV

 

The imaginary part of equation (8) gives 

  ∇2χ †A1 ∇
2χ dV −   grad χ †B1 grad χ dV +  χ†C1 x χdV = 0  ,             

VVV

 

and this proves the lemma. 

 

Theorem 1: Under the hypothesis of Lemma 1, ifA1 = lA2  , B1 = lB2  , C1 x = −lC2 x , where l is a non-zero 

real number; A2 is a non-negative definite Hermitian matrix and B2 is a positive definite Hermitian matrix, 

C2(x) is a Hermitian matrix; then 

Sup Eigenvalues of C2(x) > 0 ,        (9) 
“Sup” being taken over all the eigenvalues of C2(x) over all x in V. 

Proof: Since A2 is no 

 

n-negative definite and B2 positive definite, we have 

  ∇2χ †A2 ∇
2χ dV +   grad χ †B2 grad χ dV > 0.

VV

 

Lemma 1 then gives 

  χ†C2 x χdV > 0 .                                 (10)
V

 

Let u1 x , u2 x , ……… . . , un (x) be the n eigenvectors of C2(x). Here it is to be carefully noted that for each 

i = 1, 2, … . . , n and each x in V, ui(x) is an n × 1 matrix. Further, let λi (x) be the eigenvalue of C2(x) 

corresponding to ui(x) so that C2 x ui x = λi (x)ui(x)  (no summation implied). The matrix C2(x) being 

Hermitian in a finite dimensional space, the spectral theorem gives that these form an orthonormal basis for Rn  

for each x in V, i.e. ui
†uj x = δij . We thus have an expansion 

χ x =  fi x ui x ,

n

i=1

                                   (11) 

where fi(x) are complex valued functions on V. 

Substitution of χ(x) from equation (11) in the left hand member of inequality (10) yields 

 χ†C2 x χdV =    fi x ui x 

n

i=1

 

†

C2(x)   fi(x)ui(x)

n

i=1

 dV
VV

 

=    𝑓𝑖
∗(𝑥)𝑢𝑖

†(𝑥)

𝑛

𝑖=1

   𝜆𝑖(𝑥)𝑓𝑖(𝑥)𝑢𝑖(𝑥)

𝑛

𝑖=1

 𝑑𝑉
𝑉

 

=     𝑓𝑖 𝑥  
2𝜆𝑖(𝑥)

𝑛

𝑖=1

 𝑑𝑉
𝑉

 

≤  𝑆𝑢𝑝 𝑆𝑢𝑝
1≤𝑖≤𝑛  ,𝑥∈𝑉

 𝜆𝑖 𝑥      𝑓𝑖 𝑥  
2

𝑛

𝑖=1

𝑑𝑉
𝑉

. 
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Thus, 

 𝜒†𝐶2(𝑥)𝜒𝑑𝑉 ≤  𝑆𝑢𝑝 𝑆𝑢𝑝
1≤𝑖≤𝑛  ,𝑥∈𝑉

 𝜆𝑖(𝑥)   𝜒†𝜒𝑑𝑉  .                    (12)
𝑉𝑉

 

The theorem now follows from inequalities (10) and (12). 

Corollary 1: Under the hypothesis of Theorem 1, if 𝐶2 𝑥 = 𝐶3 𝑥 − 𝐶4(𝑥), then 

𝑆𝑢𝑝  𝐸𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝐶3(𝑥) > 𝐼𝑛𝑓  𝐸𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝐶4(𝑥) ,                    (13) 

“Sup” and “Inf” being taken as in inequality (9). 

The proof readily follows from Theorem 1. 

Corrolary 2: Under the hypothesis of Theorem 1, if 𝐵2 = 𝐵3 − 𝐵4 ,𝐶2 𝑥 = 𝐶5 𝑥 − 𝐶6(𝑥) and there exists a 

positive definite Hermitian matrix 𝐻(𝑥) s.t 

   𝑔𝑟𝑎𝑑  𝜒 †𝐵4 𝑔𝑟𝑎𝑑 𝜒 + 𝜒†𝐶5(𝑥)𝜒 𝑑𝑉 <  𝜒†𝐻 𝑥 𝜒𝑑𝑉 ,                                             (14)
𝑉𝑉

 

Then, 

𝑆𝑢𝑝 𝐸𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝐻(𝑥) > 𝐼𝑛𝑓 𝐸𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝐶6(𝑥)   ,                   (15) 

where “Sup” and “Inf” are taken as in inequality (9) and 𝐵3  ,𝐵4  ,𝐶5 𝑥 , 𝐶6(𝑥) are Hermitian matrices with 

𝐵3 ,𝐵4 and 𝐶5(𝑥) being positive definite. 

The proof readily follows from Theorem 1. 

Corollary 3: If Eq. (1) is replaced by                                                          

       𝐴𝛻4 + 𝐵𝛻2 + 𝐶 𝑥 +                                      𝑖  𝛾𝑗        
𝜕

𝜕𝑥𝑗

𝑚
𝑗 =1  𝜒 = 0,       

𝛾𝑗 ′𝑠 beings real constants, then the conclusions of Lemma1  and Theorem 1 are still valid. 

Proof: We exactly follow the proof of Lemma 1 and note that the only additional term that we now have to 

consider on the left hand side of Eq.(4) is  

 𝑖  𝜒†   𝛾𝑗  
𝜕𝜒

𝜕𝑥𝑗

𝑚
𝑗 =1  

𝑉
dv. 

Now ,  

𝑖  𝜒†   𝛾𝑗  
𝜕𝜒

𝜕𝑥𝑗

𝑚
𝑗 =1  

𝑉
 dV =                              𝑖     𝛾𝑗𝑉

𝑚
𝑗=1 𝜒𝑟

∗ 𝜕𝜒𝑟

𝜕𝑥𝑗
𝑑𝑉.         (16) 

Further, let 𝜒𝑟  = 𝑢𝑟 + 𝑖 𝑣𝑟  , we then have 

𝑖  𝜒†

𝑉

  𝛾
𝐽      

𝜕𝜒

𝜕𝑋 𝐽

𝑚

𝐽=1

   𝑑𝑉 = 

  𝑖   𝛾𝑗
𝑚
𝑗=1   𝑢𝑟

 − 𝑖 𝑣𝑟 𝑉
 

𝜕

𝜕𝑥𝑗
  𝑢𝑟

  + 𝑖 𝑣𝑟 𝑑𝑉  

            = 𝑖   𝛾𝑗
𝑚
𝑗=1  

1

2𝑉
 

𝜕

𝜕𝑥𝑗
  𝑢𝑟

2   +  𝑣𝑟
2 𝑑𝑉    −  𝛾𝑗   

𝑚
𝑗=1  

𝜕

𝜕𝑥𝑗𝑉
   𝑢𝑟

𝜕𝑣𝑟

𝜕𝑥𝑗

 −  𝑣𝑟
𝜕𝑢𝑟

𝜕𝑥𝑗
 𝑑𝑉 

   =  − 𝛾𝑗   
𝑚
𝑗 =1  

𝜕

𝜕𝑥𝑗𝑉
  𝑢𝑟

𝜕𝑣𝑟

𝜕𝑥𝑗

 −  𝑣𝑟
𝜕𝑢𝑟

𝜕𝑥𝑗
 𝑑𝑉,  

which is purely real. Conclusion of Lemma 1 and Theorem 1 therefore remain unchanged. This proves the 

corollary. 

Remark1:   It is clear that Theorem1 and its consequences are valid in a much more general setting. For instance 

𝜒 𝑥  could be a vector in an finite dimensional Hilbert space,𝐴2 , 𝐵2 and 𝐶2 𝑥  compact linear Hermitian 

operators, 𝐴2 being non-negative definite and 𝐵2 being positive definite. 

 

IV. APPLICATION TO HYDRODNAMIC STABILITY 
(a) Stability of Double-Diffusive Convection Coupled with Cross-diffusions for Veronis’ configuration 

The governing equations and boundary conditions for this problem are as follows: 

Following the usual steps of linear stability theory the non- dimensional linearized perturbation equations 

governing the thermosolutal convection problem coupled with cross-diffusion with slight change in notations 

are easily seen to given by (Neild [11], Krusin [12]).   

  


222222 aRaRw
p

aDaD sT 







                                                                              (17) 

  waDDpaD T   )( 2222
, 
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                                                                             (18)                               






w
aDS

p
aD T 








 )( 2222

,                                                                     

                                                                             (19)     together with the boundary condition  

Dww  0  at z=0 and z=1                         (both boundaries rigid)                 (20) 

or                                          

 wDw 20        at z =0 and z =1             (both boundaries dynamically free)   (21) 

or         Dww  0      at z =0                                                                

wDw 20  
 
at z=1 .                                                      

  (lower boundary rigid and upper boundary dynamically free).                                       (22) 

The meanings of symbols from physical point of view are as follows; 

z is the vertical  coordinate, d/dz is differentiation along the vertical direction, a
2
 is square of horizontal  wave 

number, σ 



  is the thermal Prandtl number, 



1  is the Lewis number, 


 4

1dg
RT   is the thermal 

Rayleigh number, 


 4

2dg
RS  is the concentration Rayleigh number, 





1

2 f

T

D
D   is the Dufour 

number, 

12

1



 f

T

S
S   is the Soret number,   is the concentration,   is the temperature, p is the complex 

growth rate and w is the vertical velocity.  

 In equations (17)–(22), z is real independent variable such that 0 ≤ z ≤ 1, 
dz

d
D   is differentiation w.r.t z , a

2
 

is a constant, σ > 0 is a constant,   > 0 is a constant, TR and RS are positive constants for the Veronis' 

configuration and negative constants for Stern’s configuration, p = pr + ipi is complex constant in general such 

that pr and pi are real constants and as a consequence the dependent variables w(z) = wr(z) + iwi(z),  (z) = r

(z) + ii (z) and  (z) = r (z) + ii (z) are complex valued functions(and their real and imaginary parts are 

real valued).  

  We now introduce the transformations 

 
 wBSw T )(~ 

                           
 FE 

~
 

  BST 
~

                        

                                                                        (23)                                                                                                               

where 

B = ,
1

A


  E = ,A
AD

BS

T

T




 F = T

T

T D
AD

BS




 

and A is a positive root of the equation  0)1(2  TT DSAA  . 

The system of equations (17)-(22) upon using the transformation (23) assumes the following form: 

  


2/2/2222 aRaRw
p

aDaD ST 







                                                                              (24) 

   wpaDk  22

1 ,                           (25)  






wp
aDk 








 )( 22

2                        (26) 

with                                                                     

Dww  0
 
at z=0 and z=1        
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                                                                                                                                                      (27) 

or 

wDw 20        at z =0 and z =1      

                                                                                                                                                             (28) 

or            

     Dww  0      at    z =0                                                                

     wDw 20      at     z =1 ,                                                                                     

                                                                            (29) 

where 

.mod

mod

)((

,
))((

tan

1,1

)/

/

21

numberRayleighionconcentratif ied

theandnumberRayleighthermalif iedthe

lyrespectiveare
DSBA

DRARBS
R

DSBA

SRBRAD
Rand

tscons

positiveare
A

DS
k

A

SD
k

TT

TTST

S

TT

TSTT

T

TTTT














  

 

Theorem2. If (𝑝, 𝑤, 𝜃, 𝜙), 𝑝 = 𝑝𝑟 + 𝑖𝑝𝑖  𝑝𝑟 ≥ 0, 𝑝𝑖  ≠ 0 is a solution of equations (24)-(29),   then 

                   𝑝 2 <  𝑅𝑆
′ 𝜎. 

Proof:  Since 𝑝𝑖 ≠ 0 we write equations (24)-(26) in the following convenient forms: 

 

,0)( 2222/

2/2222





















p

w
aD

p

k
aR

aRw
p

aDaD

S

T







                                                                             (30)

                  

(28)                                     

   wwpaDkaRT   }{ 22

1

2  ,                                                                         

                                                                          (31)  

           










w

wp
aDk

p

kaaD














})({

)( 22

2*

2

2222

                                                                           (32) 

Equation (1) reduces to the above equations with  

                                

𝐴 =    

1          0                  0
0          0                 0

0         0     
   𝜏2

𝑝 ∗
𝑅𝑆

′  𝑎2 𝑘2
2
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B = 

 
 
 
 
 
 
 
 −  2𝑎2 +

𝑝

𝜎
 0   

𝜏𝑅𝑆
′

𝑝
𝑎2𝑘2      

0 −𝑅𝑇
′ 𝑎2 0

 
𝜏𝑅𝑆

′

𝑝∗
𝑎2𝑘2 0 −

𝜏𝑅𝑆
′

𝑝∗
𝑎2𝑘2

                                                2𝑎2 +
𝑝

𝜎
  

 
 
 
 
 
 
 

 

             

 

  

 

C = 

 
 
 
 
 
 
 
 
 𝑎4 +

𝑝𝑎2

𝜎
+

𝑅𝑆
′

𝑝
𝑎2    − 𝑅𝑇

′  𝑎
2

       −  
𝜏𝑅𝑆

′

𝑝
𝑎4𝑘2

  − 𝑅𝑇
′ 𝑎2              𝑅𝑇

′ 𝑎2 𝑎2𝑘1 + 𝑝           0
 

𝜏𝑅𝑆
′

𝑝∗
𝑎4𝑘2                     0              

     𝜏2𝑅𝑆
′

𝑝∗
𝑎2𝑘2

                                                       (𝑎4𝑘2 +
𝑝𝑎2

𝜏
)  
 
 
 
 
 
 
 
 

 

 

𝜒  𝑧 =    

𝑤(𝑧)

𝜃(𝑧)

𝜙(𝑧)
  

Further, boundary conditions on 𝜒 confirms to those of 𝑤, 𝜃 𝑎𝑛𝑑 𝜙.   Also 

                       𝐴1 = 𝑝𝑖  

1                     0   0
0                    0   0

0                  0         
   𝜏2

 𝑝 2
𝑅𝑆

′  𝑎2 𝑘2
2
  

                                

 𝐵1   =    

  −𝑝𝑖    

 
 
 
 
 

   

1

𝜎
  0  0    

0    0 0

 0    0
 2  𝜏2

 𝑝 2
𝑅𝑆

′  𝑎2  (𝑎2 +
𝑝𝑟

𝜏
)𝑘2

2

    

 
 
 
 
 

 

𝐶1 =  

−𝑝𝑖

 
 
 
 
 
 
 
 𝑎2  

1

𝜎
−

𝑅𝑆
′

  𝑝 2
 0 0

0 −𝑅𝑇
′ 𝑎2 0

0  0 −
   𝜏2

 𝑝 2
𝑅𝑆

′  𝑎4𝑘2  

                                                   (𝑎2𝑘2 +
2𝑝𝑟

𝜏
)  
 
 
 
 
 
 
 

 

Now, with = 𝑝𝑖  , conditions of Theorem 1 are satisfied and hence 

                      𝑝 2 <  𝑅𝑆
′ 𝜎 

This completes the proof of the Theorem. 

(b)     Double-Diffusive Convection Coupled with Cross-diffusions for Stern’s type configuration 

The governing equations and boundary conditions of this problem under Boussinesq approximation are given by 

equations (24) - (29) with 

𝑅𝑆
′ = −𝑅𝑆

′ , 𝑅𝑇 
′ = −𝑅𝑇

′  
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 where 𝑅𝑆
′ > 0 , 𝑅𝑇 

′ > 0 (𝑆𝑡𝑒𝑟𝑛  9 ). 

Theorem 3: If  (𝑝, 𝑤, 𝜃, 𝜙) , 𝑝 = 𝑝𝑟 + 𝑖𝑝𝑖  , 𝑝𝑟 ≥ 0, 𝑝𝑖  ≠ 0 is a solution of equations (24)-(29),    then 

                   𝑝 2 < −𝑅𝑇
′ 𝜎. 

Proof:  Since 𝑝𝑖 ≠ 0, we write governing equations for the present problem in the following convenient forms: 

   

 

0ˆ)(ˆ 22212/

2222

























aR
p

w
aD

p

k
aR

w
p

aDaD

ST
,

                                                                            (33)                  

(28)                                     

 

)34(0

)(
)(ˆ 22

1*

22

1

2






 wpaDk
p

aDka
RT 

              

  0)(ˆ 22

2

2 















wp
aDkaRS                                                                                                                                                     

(35) 

Equation (1) reduces to the above equations with  

                                

𝐴 =  

1          0              0           

0          
𝑅𝑇

′ 

𝑃∗
𝑎2𝑘1

2   0

0         0   0

  

B = 

 
 
 
 
 
 
 
 −  2𝑎2 +

𝑝

𝜎
         

𝑅′
𝑇

 

𝑝
𝑎2𝑘1  0    

𝑅𝑇
′ 

𝑝∗
𝑎2𝑘1 𝑅𝑇

′ 𝑎2
𝑘1

𝑝∗
 2𝑎2𝑘1 + 𝑝 0

 0 0 −𝜏𝑅𝑆
′   

                                                                         𝑎2𝑘2  
 
 
 
 
 
 
 

 

C = 

 
 
 
 
 
 
 𝑎4 +

𝑝𝑎2

𝜎
+

𝑅′
𝑇

 

𝑝
𝑎2    

𝑅′
𝑇

 

𝑝
𝑎2𝑘1           −𝑅𝑆

′  𝑎2   

−
𝑅′

𝑇
 

𝑝∗
𝑎2  𝑘1   

𝑅𝑇
′   

𝑝∗
𝑎4𝑘1 𝑎

2𝑘1 + 𝑝   0       

−𝑅𝑆
′  𝑎2  0  𝜏 𝑅𝑆

′ 𝑎2

                                                                         (𝑎2𝑘2 +
𝑝

𝜏
)  
 
 
 
 
 
 

  

    𝜒  𝑧 =    

𝑤(𝑧)

𝜃(𝑧)

𝜙(𝑧)
  

Further, boundary conditions on 𝜒 confirms to those of 𝑤, 𝜃 𝑎𝑛𝑑 𝜙.   Also 

 

                       𝐴1 = 𝑝𝑖  

1          0   0

0          
𝑅𝑇

′ 

 𝑝 2
𝑎2𝑘1   0

0         0   0
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   𝐵1   = − 𝑝𝑖   

 
 
 
 

   

1

𝜎
                  0          0    

0                     
 2𝑅𝑇

′ 

 𝑝 2
𝑎2𝑘1    𝑎2𝑘1 + 𝑝𝑟      0

 0                   0      0

 

 
 
 
 

 

 

 

 

𝐶1 =  −𝑝𝑖  

 
 
 
 
 
 
 
 
 
𝑎2  

𝑅𝑇
′ 

  p 2

 

−
1

σ
             0                              0

0                              
RT

′ 

 p 2
a4k1                         0

             a2k1 + 2pr      

0                            0                        −    RS
′   a2      

 
 
 
 
 
 
 
 

 

 

Now, with  l = pi , conditions of Theorem 1 are satisfied and hence 

                      p 2 <  −RT
′ σ. 

This completes the proof of the Theorem. 
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