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ABSTRACT—Cloud computing offers a cost-
effective and elastic computing paradigm that
facilitates large scale data storage and analytics. By
deploying virtualization technologies in the
datacenter, cloud enables efficient resource
management and isolation for various big data
applications. Since the hotspots (i.e., overloaded
machines) can degrade the performance of these
applications, virtual machine migration has been
utilized to perform load balancing in the
datacenters to eliminate hotspots and guarantee
Service Level Agreements (SLAs). However, the
previous load balancing schemes make migration
decisions based on deterministic resource demand
estimation and workload characterization, without
considering their stochastic properties. By studying
real world traces, we show that the resource
demand and workload of virtual machines are
highly dynamic and bursty, which can cause these
schemes to make inefficient migrations for load
balancing. To address this problem, in this paper
we propose a stochastic load balancing scheme
which aims to provide probabilistic guarantee
against the resource overloading with virtual
machine migration, while minimizing the total
migration overhead. Our scheme effectively
addresses the prediction of the distribution of
resource demand and the multidimensional
resource requirements with stochastic
characterization. Moreover, as opposed to the
previous works that measure the migration cost
without considering the network topology, our
scheme explicitly takes into account the distance
between the source physical machine and the
destination physical machine for a virtual machine
migration. The trace-driven experiments show that
our scheme outperforms the previous schemes in
terms of SLA violation and the migration cost.
Index Terms—datacenter, virtual machine
migration, load balance, stochastic load balancing,
resource management.

INTRODUCTION

ECENTLY virtualization technologies have been widely

deployed in data centers by the cloud providers
toprovidelnfrastructureasaService(laaS),suchasAmazon  Elastic
Compute Cloud (EC2) [3] and Microsoft Azure [1]. The virtual
computation environment provides large scale on-demand and
elastic computation and storage capabili- ties, which significantly
facilitate large-scale data analytics and spur big data innovation.
Through virtualization, the resources on Physical Machines (PMs)
are partitioned into Virtual Machines (VMs), which host
application gompu- tation and data while enabling application
isolation from applications in other VMSs. In the virtual machine
environ- ments, multiple VMs share the resources on the
samephysi- cal machine. Each VM can run one or more
applicationsand an  application can distributedly run in
multipleVMs.

Due to the dynamic workload of applications and the
resource multiplex sharing of data center networks, guar-
anteeing the Service Level Agreement (SLA) of cloud ap-
plications, especially large-scale big data applications, & a
complex task. The resource virtualization in the cloud facilitates
such task. It enables elastic resource scaling that dynamically
adjusts the resource allocation for a VM to accommodate the
application resource demands  [28], It also

enablesvirtualmachinemigration[36]forloadbalancing
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to eliminate hotspots and consolidation [40] to improve
resource utilization and energy efficiency.

Load balancing is critical for guaranteeing the SLAs of
applications in cloud. The workload increase ofapplications in
the virtual machines may cause one or multiple resources
including CPU, memory, 1/0 and network bandwidth on the
physical machines overloaded. An overloaded physical
machine often degrades the application performance of all the
VMs on it, increasing the job completion time for batch
dataprocessingandtheresponsetimeofinteractiveapplica- tions.
In order to eliminate such hotspots, excess load must be
migrated from the overloaded physical machines to un-
derutilized ones. However, this load balancing through VM
migration is a complicated and challenging problem. First, it
needs to consider multiple resources {e.g., CPU, memory, IO
and network) for each VM and physical machine. The
applications have diverse resource demands, so the VMs
running these applications can be CPU-intensive, memory-
intensive or network-intensive. Thus, to decide which PM aVM
should be migrated to, the multidimensional resource
requirement of the VM has to be considered and matched
with the multidimensional available resources on the PMs.
Second, the overhead of VM migrations for load balancing
(i.e., the amount of data transferred) should be minimized.

The VM migration can adversely affect the application
performance in the VM [13], and incur severe performance
interference to other running VMs on both migration source
and destination PMs [38]. Reducing the overhead of VM
migrations alleviates the performance degradation caused by
VM migrations for load balancing. Third, due to the dynamic
changes of application workload in WMs, it & not efficient to
make the migration decision only based on
thecurrentstateofthesystem.Accurateloadpredictionis

necessary for load balancing but difficult.

To address this load balancing problem, a number of
methods [4], [6], [8], [10], [12], [18], [28], [30], [36] have been
proposed which can be divided into two categories: reactive and
proactive load balancing. The reactive methods [4], [12], [30],
[36] determine load imbalance and hotspots by comparing the
current resource utilization measurements with the given
thresholds, and decide where the VM should be migrated based
on the current load states of the PMs. The common issues of
these reactive methods are the time delay to respond the load
imbalances and inefficient load balancing actions due to the
dynamic load changes. Inorder to address these disadvantages,
proactive methods [a], 8],
[10],[18],[28],[37]areproposed,whichmakeVMmigration

decisions based on the predictions of resource utilizations of
VMs and PMs. However, for highly dynamic workloads, the
prediction-driven load balancing can be inefficient due to the
inaccuracy of predicted resource demand and usage. Over-
estimation predictions may cause wasteful resource allocation
and under-estimation predictions can cause sig- nificant SLA
violations. Previous work [28] uses adaptive padding to avoid
under-estimation errors and fast correc- tion after detecting
under-estimation errors. 5till, it makes VM migration decisions
based on deterministic estimations of VM resource demands and
current load states of PMs, without considering their stochastic
variances. This may lead to inefficient load balancing for highly
dynamic work- loads, increasing the risk of SLA violations and the
times of VMmigrations.

Toaddressdemanduncertaintyanddynamicworkloads, in this
paper we consider stochastic load balancing through VM
migration. As opposed to the previous works, the stochastic load
balancing problem characterizes theresource demand of VMs
and load states of PMs probabilistically, and aims to ensure the
aggregate utilization of each type
ofresourcesoneachPMnotexceedingitscapacitywitha
highprobabilityl s.Theprobabilitysisdeterminedby
thesLAagreementandindicatestnerskotsLAvIolations
on each PM. The stochastic workload characterization & able to
capture the uncertainty and dynamic changes of resource
utilizations. With the probabilistic guarantee for handling
overloads, the load balancing decision can en- sure the resulted
application performance is more resilient against highly dynamic
workloads while achieving efficient
statisticalmultiplexingofresources.Howeverthestochastic  load
balancing poses new challenging problems including how to
estimate stochastic resource demand, how to de- tect hotspots
and how to make VM migrations while cap- turing
multidimensional stochastic resource requirements. Although
the existing work [8] also aims to provide the same probabilistic
guarantee, it just regards the demand prediction error as
stochastic variables and does not fully address these problems in
the context of stochastic de- mands. Its VM migration algorithm
considers each resource separately, without combining all the
dimensions to evaly- ate the overall load status of PMs.
Furthermore, it does not consider the migration cost. In contrast,
our paper proposes a stochastic load balancing scheme which
effectively and efficiently addresses theseproblems.

Our scheme aims to minimize the transmissionoverhead
incurredbyVMmigration.Previousmethods[28],[36]de-
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cideVMmigrationswiththeconsiderationofVMs'memary footprint.
However, they measure the migration cost with- out considering
the network topology. In contrast, the VM migration algorithm in
our scheme takes into account the transmission distance (hops)
for the migration cost. Further- more, compared with the
previous methods, our migration algorithm is able to improve
the worst performance the system could experience from
thehotspots.

The rest of the paper is organized as follows. Section 2
presents the related works. Section 3 identifies and formally
defines our stochastic load balancing problem. Section 4
presents the overview and the detailed design of our load

balancing scheme. Section 5 presents the performance eval
uation of our scheme compared with other load balancing
schemes in trace driven simulations. Finally, Section 6 con-
cludes this paper and indicates our future work.

RELATEDWORKS

Load balancing is a well-studied problem in distributed
computer systems. Previousworks [23], [31] consider the
problemofstaticallybalancingtheloadinordertominimize the
mean job response time.For cloud, many works [4], [11], [12],
[26], [29], [30], [32], [33], [36], [39] havebeen
proposed to preform load balancing by VM migration from
overloaded PMs to underloaded PMs.

Arzuaga et ol [4] present a load balancing VM migra- tion
framework based on a new metric for quantifying virtualized
server load. The new metric is based on the variation in load
measured on the PMs. In the framework, the load balancing
algorithm chooses the VM migration that achieves the greatest
improvement on this imbalance metric. Sallamet ol  [26]
consider the migration process as a multi-objective problem and
propose a novel migration policy which utilizes a new elastic
multi-objective gptimiza- tion strategy to evaluate different
objectivessimultaneously. Tarighief al [32] propose a multi
criteria decision methodto migrate VMs between nodes. To
reduce the timeand cost to achieve load balance, Chen et al,
propose RIAL [12], in which different weights are dynamically
assigned to
differentresourceshasedontheirusageintensityinthePMs ~ for
determining which VM to migrate andwhere.

Singh et al. [30] propose a load balancing algorithm called
VectorDotthat takes into account the hierarchi- cal and multi-
dimensional resource constrains. It utilizes
vectorstorepresentmulti-dimensionalresourcedemands.

ItemPathLoadFracVec(u) is the resourcerequirements
W&t%%ﬁﬁ%%@ﬁ%’%ﬁ%“ B RSE Vnd

giltembathLoadrrackec(y) i
d W W 1dL [T ¥ S
QUUTINLY L VU LS TWAE WaL i DNy Wadeu vin uigie-

source for which the item requirements are also high. Wood et
al. [36] propose a system named Sandpiper which auto- mates
the hotspot detection and VM migration. Sandpiper predicts the
resource utilization on the PMs and compares it with a threshold
to determine a hotspot. It uses the vol- ume defined as the
product of CPrU, network and memory
loadstocapturethecombinedloadonmultidimensional

resources, Each VM has volume-to-size ratio (VSR) where size is
the memory footprint of the VM, to measure the volume per
unit byte moved. The VM migration algorithm attempts to

migrate the VM with the maximum VSR.
Yeet al, [35] consider the live migrationstrategyof
multiplevirtualmachineswithdifferentresourcereserva- tion
methods. Shrivastava et al. [29] proposeanapplication-
awarevirtualmachinemigrationscheme,whichtakesinto account
the communication dependencies among VMsofamulti-tier
enterprise application, the underlyingdatacenter
networktopology,aswellasthecapacitylimitsofthe
physicalserversindatacenters.Chenetal.[11]proposea
parallelmigrationtospeeduptheloadbalancingprocess,
whichmigratesmultipleVMsinparallefromoverloaded hosts to
under utilized hosts through solvingtheminimum weighted
matching problem on a weightedbipartitegraph.
Besides,manyschemes[6],[8],[10],[16],[18], [20], [27], [28]
balance load based on the predictionoffuture workloads of PMs
orVMs. Chandra et al, [10] consider
theproblemofdynamicresourceallocationforwebappli-
cationsrunningontheshareddatacenters, Theresource
allocationishasedonaresourcemodelwhoseparameters
arecontinuouslyupdatedthroughanonlinemonitoringand
predictionframework.Gongetal. [18]usethesignalpro- cessing
technigues and statisticalstate-drivenapproachesto
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unobtrusively capture the patterns of thedynamicre- source
requirement and predict resource demandsinthe
nearfuture.Basedonthepreviouswork[18],Shenetal
[28] propose CloudScale, a system that glastically scalesthe
resources of VMs according to their predicted demands and
resolve scaling conflicts using VM migrations. Basedon a Markov
Chain model, Beloglazov [6] proposes an algorithm for host
overload detection under the specified QoS goal which aims to
maximize the mean intermigra- tion time. Sharma et al. [27]
present a cost-aware system for dynamically provisioning virtual
server capacity, which
combinesthereplicationandmigrationmechanismsandthe
pricingmodeltoselectresourceconfigurationandtransition
strategiestooptimizetheincurredcost.VirtualRank[16]ob-  serves
multiple future load values to predict load tendency
intheupcomingtimeslotandselectsthepotentialmigration  target
node using the Markov stochasticprocess.
Most aforementioned schemes make load balancing de-
cisions based on deterministic estimations/predictions  of
resource usage. However, due to the dynamic workloads and the
estimation/prediction errors, the resulted resource demand
estimation may deviate significantly from the pre- diction, which
can lead to SLA violations and requires fur- ther VM migrations.
To address this issue, CloudScale[28] proposes adaptive padding
and fast underestimation cor- rection to handle the prediction
error. But it still makes mi- gration decisions based on
deterministic estimation without considering the stochastic
variances of resource usages of Vs and PMs. Our work [8] also
aims to provide statis- tical guarantees of service quality taking
into account the probability distribution of prediction errors.
However, for multiple resources, it determines the destination
PM for a VM migration by only checking whether the PM can
accom- modate the VM along each resource dimension

separately. However, it may lead to improper migrations.
Because aPMcanbeoverloadedalongoneormoredimensionsof

resources,itisnecessarytocombineallresourcedimensions
together to consider the overall overload probability of a PM.
Besides, it does not consider the hotspot detection in the
context of statistical guarantees and the migrationcost.
Compared with these works, in this paper we consider the
stochastic characteristics of resource usages andpropose a set of
solutions for stochastic load balancing, including the prediction of
probability distribution of resource demand, hotspot detection
and VM migration algorithm considering the overall load status
on multi-dimensional resources for PMs. In addition, our VM
migration algorithm aims to minimize the migration cost that
takes into account the network topology and improves the worst
performance the system could experience from thehotspots.

STOCHASTIC LOAD
BALANCINGPROBLEM
In this section, we study the workload uncertainty
of VMs with a real world trace, formally define the
problem of stochastic load balancing using VM
migration, and discuss its hardness.

3.1 WorkloadDynamics

In our stochastic load balancing problem, the resource de-
mandsandworkloadsarerepresentedbyrandomvariables. Recent
studies [7], [13], [22] show that VM's demands for certain
resources are highly bursty and can be characterized by
stochastic models. Previous works [14], [21], [35] assume the
normal distribution for resource demands of VMs. In this paper
we begin with a trace study to look into the VMs" workload
dynamics and their probabilitydistributions.
Weusetwotraces:PlanetLabtrace[2]andGooglecluster

trace[19].ThePlanetLabtracerecordsthe CPUutilization

of YMs in Planetlab platform every five minutes in 10
fandomaavsiniiarchanaApri2oll. IneGoogleCluster

trace records the CPU utilizations of tasks in about 11000
machines in a cluster in May 2011 for 29 days. We studythe
variance of CPU utilization and its empirical probability
distribution during a short period in aday.

First, we examined the mean, 95th percentile, 5th per-
centileofCPUutilizationsanditsdistributionforeachvm

2.5hourswhicharetypicalinourobser\rations.Fi$urel
showsthemeanandpercentileresultsotCPUutlizations.

As we can see, although these VMs have different average CPU
utilizations, their variances indicated by the

errorbarsareguitelar%e.ForexamglettheCPUutilizationof
I d S0 d £ u L;Lf"lald.“rhl{l‘

i) S Ry Sy gy W TRy
LR pR AP TE  g ~ L PP v L PRI b U PTPRRN - y PRPRPE P )

using the histogram of CPU utilization. We found that it
approximately follows normal distribution, as exemplified by
Figure 2.

We further examined the CPU utilization in the Google
Cluster trace. Although the records in the trace are the resource
usage of tasks instead of WMs, they reflect the workload
dynamics in the real world applications andaffect
thevirtualresourceallocationwhenrunninginVMs.Infact,

we observed the similar results as in the Plantlab trace.

P g

Furthermore,theCPU utilizationsofttypicalV Mswithin

2.5hoursareshowninFigure3.Aswecansee,theCPU
utiizationhasalargevariance.rorvMb,tsmeanCru

utilization is 20% and 95-th percentile is up to about 30%. The
probability distributions of CPU is also exemplified by Figure 4,
similar to narmal distribution.

The above trace study indicates the highly dynamic re- source
demands of VMs in real world. Without considering the variance,
only using deterministic estimation like mean value for VM
migration could lead to resource overload and increase SLA
violations. We analyze the adverse impact of such dynamic
workloads on the performance ofthe load balancing schemes
based on deterministic demand characterization in Section 4.4
and validate it in Section 5. Here we use the example shown in
Figure 5 to jllustrate the issue of the deterministic load
balancing scheme for dynamic workloads. Suppose a cluster with
four PMs and only CPU  resource is considered for load
balancing.PM
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1is determined as a hotspot and we choose to migrate VM 1 to
other PMs to eliminate this hotspot. The CPU
demand(inpercentage)ofVM1lfollowsnormaldistribution

T R B s R R R el
[PTOTIONR {4 H R R T SO SR R R

fie distribution (50, 25). _If,, the, load, balancing, scheme, our
i e ?'IUL:IUUI. [8]} Easl uaueu Fivi

decided by the average CPU demand estimation as [36], VM 1 is
migrated to PM 4 since it has the smallest mean CPU usage
among the under-utilized PMs. However,
ftheVMisplacedonPM4,theprobabilityofPM4bein

i i i
i Tpuey, S s VLIl S S g O T
O e T TR L PR Py +y e T T R iy )

get overloaded[d only 3% .We can see that the migration toPM 2
or PM 3 is a bd¥ter choice for load balancing, which can reduce
the 5LA violations and possibly the number of the subsequent
migrations. This simple example shows the impact of highly
dynamic resource demands on the efficiency of loadbalancing.

Therefore, a load balancing scheme considering the
stochastic resource demands is required to address this is- sue.
According to our observation, in this paper we assume the
resource demands follow the normal distribution for simplicity.
Note that our stochastic load balancing scheme can be also used
with other probability distributions.

3.2 Problem Description

Generally, a load balancing algorithm using VM migration
needstodecidewhentomigrateVMs,whichVMtomigrate and
where to migrate. In addition, the algorithm should minimize the
total migration overhead. Since VMs can bemigrated over
multiple hops in the network, the migra- tion overhead not only
depends on the total amount of data transferred for VM
migration, but also the number of hops the data being
forwarded. As indicated in previous works [36], [38], the total
migration overhead can signifi- cantly affect the performance of
the applications inside the
VMs,notonlyformigratedVMsbutalsoforotherVis

1 A E——

A ---qmmmmm e mm - f -

CPU utilzation

Virtual Machine 1D

Figure 1. The variance of VM CPU utilization in
PlanetLab trace.
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Figure 2. The probability distribution of VM CPU
utilization in PlanetLab trace.

onthe source PM and destination PM of the migration. By
minimizing the data transmission cost of migration over the
network, the load balancing algorithm can reduce the total
migration time and thus the adverse impact on applications.

Therefore, our stochastic load balancing problem aims to
make efficient VM migration decisions such that for each
resource the total demand of VMs on each PM does not exceed
the capacity of the resource of the PM with a high probability,
while the migration overhead is minimized. We formally define
this problem with the following analytical model. Table 1
describes the notations used in thispaper.

We consider a data center cansisting of M PMs and N VMs.
We consider multiple types of resources including CPU, memory,
disk 1/0 bandwidth and network band- width. For each resource
I, its capacity on a PM fis denoted as ¢". The demand of a VM j
for resource I'is denoted as

Table 1
Motations

Motation | Description

T The tolal number of PMs

I The total number of VMs

[H The capacity of resource ron afPM J
Ty Thestochasticdemand of VM fforre-

source

§r The memary footprint of VM |

I The indicator variable. L=1iwM j
iz placed on PM J

Fig | ThedistancelhopsihetweenEMiand
PM K inthe data center

5 The threshold of the probability of a PM
being overloaded
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Figure 3. The variance of task CPU utilization in
Google cluster trace.
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Figure 4. The probability distribution of task CPU
utilization in Google cluster trace.
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Figure 5. An example of load balancing with
dynamic workloads.
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overlpaded. It indicates the risk of SLA violations on each PM and

can be determined by SLA agreement.

TheoverheadofVMmigrationdependsonthememaory
footprintoftheVMtomigrateandthedistancebetweenthe
sourcePMandthedestinationPMaofthemigration, Lets;be the
memory footprint (i.e., the number of bytes inMB

or GB) of VM J, and hy{hy 2 1) be the distance (i.e. the
AUMDELOINORS ) REDNEENEMLANOEMK LD OVEINEINAL
aVMmigrationismeasuredbytheproductofthememory
footprintofthemigratedvVMandthedistancebetweenthe
migration, source and destination,inbytes X hops.Then,

thetotaloverheadofVMmigrationsneededtoachievethe
updated placement IZ can be computedby
25> -
Llzshgs; (2)
Jj i kK
WDRIRL: LTS LTV M/ ISMIZrate arromPVITOF MK,
otherwisel, ;-E-I% ;0.

Ihus, the analytical formulation of our stochastic load
balancing problem is
2z
» Ll has; (3)
minimize

el T L LA, = LA™ 21 OadLyl
i i

4
; 4
E=dorl. vii

DOI: 10.35629/5252-030510221037 Impact Factor value 7.429 | 1SO 9001: 2008 Certified Journal Page 1027



\’ﬁ& , International Journal of Advances in Engineering and Management (1JAEM)

S

JAEM

Volume 3, Issue 5 May 2021, pp: 1022-1037 www.ijaem.net

probability distribution for I, iny order to provide ageneral
stochastic framework to address the load balancing prob- lem.
To solve the problem, specific probability distribution functions
need to be defined for the distribution estimation of resource
demands and the calculation of Formula (1).

Example: Here we show an example of the above problem based
on the Figure 5 with 5 VMs and 4 PMs. According to our above
definition, we have

0001
Ine distance M:NeTween PMs can be represented by

Helh) = Z,0 44
4402
4420

.o 3Uppose 8 = 0.05, Then, based on the calculatlon in Section

iV L aiid rivi 2 aic ﬂIJIJIUIJIIﬂl.C wandiaawca v

migration destination for VM 1 since the probability that they get
overloaded after VM 1 is migrated to either ofthem is 3%, less
than 8. To minimize the migration cost that depends on the
distance between the source PM and the destination PM, the
best choice is to migrate VM 1 to PM 2because PM 2 is closer to
PM 1. Thus, the optimal solution, described by the new
placement matrix,is

01 00D
1000

1 vy

00 10 -

s
|
([

0001

Generally,thisproblemisNE-hard, sincertcanbere-
garded as a variant of the stochastic knapsack problem [17].

Inaddition,duetothelargenumbersofV MsandPMsin

Loadbalancer

VM migration controller ‘

/ N\

Stochastic
demand |- . dH?tscgot
prediction etection

¥ —
\ —

[ Resourceusage collector ] [ Migration enforcemend
o

Em| (e
[ VIV | — P

PM FM PM

Figure 6. The overview of the stochastic load
balancing scheme.

a data center, the problem size is also significant.
Consider- ing such computational complexity, in
practice, the cluster load balancers deployed in the
data center mostly rely on
heuristicstosolvetheproblem.Thus,wedevelopaheuri
stic algorithm to solve our stochastic load
balancing problem.

LOAD BALANCINGSCHEME

In this section, we describe our load balancing scheme. Our
scheme has common components as other previous load
balancing schemes [4], [6], [8], [10], [12], [18], [28], [30],
[36],includingtheprofilingofresourcedemand, hotspot
detectionand hotspot migration, But as opposed o these
previous works, in our load balancing scheme, the goal of the
profiling is to generate the stochastic characterization, i.e., the
probability distribution of the resource demand
and usage. Previous load balancing schemes give determin-
istic estimations which cannot capture the uncertainty of
warkloads. For hotspot detection, we propose to examine
the probabilistic guarantee in Formula (1) based on the
probability distribution of resource demands of VMs. For
hotspotmigration,aheuristicalgorithmisproposedtosolve
theproblemformulatedinSection3.2todecideefficientVi
migrations.

Figure & shows an overview of our load balancing scheme
and the information flow among different compo-
nents. The scheme s centralized. A load balancer runs in
a central server, In each PM the monitor tracks the CPU,
memory and network usage of each VM and PM, and peri-
odically sends the usage statistics to the resource usage col-
lector of the load balancer. The resource usage information
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estimate the distribution of resource demand for each VM.

Inedistributionestimationsarethenusedrortnenotspot
detectionandtheVMmigration.Themigrationenforcement

based on the normal distribution. Nevertheless, our scheme can
be easily extended to other types of distributions of resource
demands, with specific distribution estimation and probability
computation for the given type of distribution functions.

4.1  TheProfiling of Stochastic ResourceDemand

Forthe profiling, each VM’sresource usages onCPU,mem-
ory.networkbandwidthanddiskl/Oaremanitored.The
loadbalancerreceivesperiodicreportsofresourceusages fromeach
PM, and repeatedly estimates theprobabilitydis- tributions of
resource demands of VMsin aslidingwindow.
AccordingtoourtracestudyinSection3.1,weassume
thatthedemandsoftheVMsforeachresourcerfollow
normaldistribution.ForVMj,supposingthatitsdemand

forresourcerfollowsN{i,0%), theproblemishowto

estimate parameters ["and 0" *based on the previous usage
T .7

observations. A straightforward way is to compute the sam- ple
mean and the sample variance of the observations in the window
and use them as the estimations of the parameters of the
normal distribution. However, using the statistics of the historical
observations are not good predictions for the resource demand
in the future because they cannot capture the increasing or
decreasing trends of resource utilizations. Therefore, we propose
a method which integrates the time series prediction techniques
into the estimations of the dis- tribution parameters of resource
demands, while notrelying on any specific time-series
predictiontechnigue.

Suppose that a time-series prediction function makes a

predictiontothedemandinthenexttimeintervalbased
0N M prior resource utilization observations 0, 07, .
resource I i

, 85 in [8], [36], [37]. The function can be any of Auto
Regressive (AR} models, exponentially weightedmov-

ingaverageoranyothertime-seriespredictiontechnique.
I'he tuncionoutput is the prediction of {d. Lwhich 1s a

constant, o el
Inaddition.weevaluatetheestimationerrorsformost
recentnobservations,thatis,e™=0" ", €’ =0" -,
1 1 12 2 2
£ =, . We calculate the sample mean  [t.and the

. Ortor
1 n

£ 1 n
follows: n
= & ()
=
1=— N H
0=C..ple —ub = (6)
El
Then, we estimate the statistics u” and 0™%of the re-
] J
source demand in the time interval
n+1las
i owl T
a'izg? 18}

" , the above

- I —

receives the instructions from the VM migration controller to do
themigrations.

previous trace study in Section 3.1. The distribution estimation of
stochastic resource demands and the computation of
overloading probability of PMs are

estimation to the distribution of the resource demand cap- fures
both the changing trend of the resource demand and the
uncertainty (variance). Besides, considering that the distribution
of VMs' workload can change with the time frequently,
continuous estimation of workload distribution for the next time
interval can capture such changes timely and help to effectively
detect and avoid hotspots.

4.2 Hotspot Detection

To detect hopspots, our scheme periodically evaluates the
resource allocation status of each PM based on thepredicted
distribution of resource demands of VMs on the PM. Previ- gus
works with deterministic demand prediction determine a
hotspotPM by checking whetherthe aggregate resource demand
of VMs on the PM exceeds a threshold. Instead, our stochastic
load balancing scheme determines a hotspot by checking
whether the probability of overloading is no larger than s for
each resource T, i.e., whether Formula (1) holds.

... .ket¥] be the setof Vs running on 3 PM . For eachVM

N(1#,a"*)whichispredictedbytheprofilinginSection

4.1, Then, because we assume that each VM's demandz’s

independent of others, the aggregate demand D;

=
|

2 X
followsthedistribution/\{ '[JL;%' afzka%cccidingtcthe

propertvotnormaIdistribution.r‘rrhen,'rtigfeasvtoshowthat
Pr( 2 p< €) 2 1 —38isequalto
sk

—
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where %{ H! is the inverse of the cumulativedistribution

termined as a hotspot, if there is any resource 1 for which
Inequality (3) does not hold, Alternatively, to avoid un- necessary
migrations caused by small transient spikes of workload, similar
to previous work [36], we can determine a hotspot only if the
above probabilistic guarantee for any resource is violated for a
sustained time. That is, a PM is determined as a hotspot if
Inequality (9) does not hold in atleast k out of the 1 most recent
checks with the predicted demands as well as in the
currentcheck.

4.3 Hotspot Migration

After hotspots are identified, the load balancer needs to solve
the problem of which VMs to migrate and where in order to
dissipate the hotspots. This problem is formulated in Section 3.2
and its hardness is shown. In this section, a heuristic hotspot
migration algorithm is proposed.

For each hotspot PM [, based on the estimated re-source
dgmands of Vit set E on I, we can obtain

D:ONg 78 @%?)and then compute the prob-
= 2= F
abilityPr( . Dy=¢’) far each resource T, denotedby

P!;Because iis a hotspot, there must exist one or more

tense resources (2 overioad risk ot a hotsooti
.We define the

as the probability of at least one of tense resources being

overloaded.
]

I
ouerloadrisk(i)=1— ' [1-P ) (10)

iheing overloaded on any of tense resource. Note that, For- mula
(10) assumes that the utilizations of different resources are
independent. This could be not true if, for example, an
application can be both CPU intensive and 1/0 intensive and in
this case the overloading probabilities of these two resources are
correlated. Because the correlations between multiple resources
vary with the applications and are hard to characterize, we
assume the independency among differ- ent resources and
simply regard overloadriskas a metricto measure the overall
resource tensity in aPivl.

431 AlgonthmQverview

In our hotspot migration algorithm, the hotspots are sorted in
decreasing order of thelr overload rsks and Stored M veca
overload risk among the hotspots, selects the VM whose

removal can most efficiently reduce the PM's overload risk,

and determines which PM this VM is migrated to. If no VMs

can be migrated from the hotspot PM with the largest over-
loadrisk, thealgorithmexaminesthenexthotspofinthe

updates the resource allocations of source PM and destina- tion
PM, and recomputes the overload risk of the remaining

hotspots. The algorithm iteratively runs over the remaining
hotspots, and terminates until there are no hotspots left.The
determinationofthedestinationPMforaVMmigration

migration cost given in (3). For a VM to be migrated, we perform
a hypaothetical migration to every under-utilized PM, and selecta
PM as a destination candidate if at this PM the resources still
satisfy constraint (4) after the migration. The PM with the
minimum migration cost among all the candidates is chosen as
the final destination PM in order to minimize the total migration
cost (3).

The algorithm records all the hypothetical VM migra- tions
(which VM is selected and where to migrate) deter- mined in the
way described above and the final output & a list of VMs and
their destination PMs. Note that during the iteration, the
algorithm may not find any feasible VM migration to reduce the
load for any hotspot when all the PMs become heavily loaded. In
this case, to avoid infinite loop, the algorithm also ends and
outputs the VM migra- tions obtained before termination. Next,
we explain howthe algorithm determines which VM to migrate
andwhere.
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432 Which VM to migrate andwhere

To decide which VM to migrate, we introduce a new met-
ricforaVMwhichindicatesthedegreeofoverloadrisk

reduction caused by its removal, denoted by ORreduction.
Suppose that a hotspot PM has the VM set V on it. Given the
estimations of VMs' demand distributions for resource

r,wecancomputetheaggregatedemanddistributionafter
INEremoval ot vivi | £ ¥, ana Tnus e TONoWING pronaniiny

Py = Pr

We define

where R is the set of tense resources. As we can see, the
higher overload risk indicates the higher probability of PM
I- i3
5 = prwn.:.«‘- it P wwrrsr OO (12)
N s if P* = <3
ERIAL ¥

___Then,theORreductionfortheremovalofVMifromPM

ORreduction(j) =
overloadrisk{i) —1;=x . e (13

letS ... =Swhen P

is, for two VMs J and k, if either one of theirremovals

can ensure resource I satisfies the probabilistic guarantee for
overloading in Formula (1), they contribute the same to the
overload risk reduction along the dimension ofresource

T. In this way, if either one of their removals can have all
tense resources to achieve the probabilistic guarantee, VM
and k have the same overload risk reduction,ie.,

ORreductiony(j) = ORreductiondk). From thedefinition
we tanses LRreduciioncaniures the load along each
resource dimension and measures the benefit of a VM migration

for alleviating the tensity of resources.

The VMs on the currently considered hotspot PM are sorted
in a list in the decreasing order of QRreduction. Furthermore,
the VMs in the list are divided into dif- ferent groups by
different intervals of ORreduction. Given Formula (12) and
Formula (13), themaximum

.

’

Ve rting

a =0, and the VMs ¥ y he of
uivmacu iy n d wiaLn
NAgIJYUphl YITAQINIRIS, LIS VIVIDHILIE

interval (MaXqgssdngion, , M0 the last prou

St VIR e lIE 1
gverload reduction are classified into a same group. Nofe
thattheremovalofanyVMinVgwouldletthePMachieve -
probabilistic guarantee (1) for each resource 1. Thus, Viis
considered atfirst.

In this way, to choose a VM to migrate, the VM groups are
examined in the descending order of QRreductionintervals and
in each group the VM which can achieve

thesmallestm&gratewerheadisgref&rredform' ration.
INaSdimMeRIoup, TOrEVEIYVIVI], WELHECEAIULINET 15

anddetermineadestinationPMM thatcanaccommodate
WM} sresourcedemandwhilehavingthesmallestmigra- tion
overhead for the VM among all the PMs, denotedby

Cost(j.M,).GivenaPMIandtheVMsetVionit thePM

. 2 J
another PM Iif and only if Pr(D"+7 %ﬁ 1+ g
i
Themigrationoverheadistheproductofthe¥ M’ smemory

Here, & controls the degree of QRreductionsimilarty in

agroup. In the extreme case that @ is small enough and each
single VM forms a group, the VM selection actually is the

largest QRreductionfirst strategy regardless of the migra- tion
cost. Oppositely, if @ is large enough and all the VMs are in one
group, the VM  selection becomes the  smallest
migrationcostfirststrategy.Therefore, @indicatesthetrade-
off between the optimality of the overload risk reduction and the
optimality of the migration cost. Appropriate value of @ can be
determined through experiments. Algorithm 1
< 8. The reason for that

As we can see, each time our algorithm determines one VM
migration for the most overloaded hotspot, and then resorts all
the hotspots in the order of their overload risks “after this
migration” to find the next possible migration on the possibly
new most overloaded hotspot. Previous works either
continuously find VM migrations for the most over- loaded
hotspot until it is not overloaded or determine one VM migration
for each hotspot in order of their overload degree but without
resorting the hotspots after determining a migration. In contrast,
our algorithm always tries to im- prove the worst hotspot after
each migration and thus can fairly reduce the loads on all the
hotspots to the same level of load status. With such fairness,
even when not all the hotspots can be eliminated, our algorithm
is able toimprove
theworstperformancethesystemcouldexperiencefromthe
hotspots.
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433 Time complexityanalysis

We assume that the number of resource types is bounded by a
constant, which is true in practice. Let Upmbe the maximum
number of VMs a PM can run. According to our algorithm, each
iteration on the while loop of line 2 has to
findanewVMmigrationotherwisetheloopends, Thisindi-
catesthenumberofiterationsonthewhileloopofline2isat most
oo Hwherd H isthe Humber of hotspotsinitially

EdLI'I Il dui III'IE '-} I1d|I'E e LUIIIHIEI\IL[M

ALIUﬁ AA’. .1‘

b

¥ [T o a
QEIn[mlgraIth cost, whlchl;lntalh,f incur W“]runnmg time

whe U| is the total number of PMs. Thus, line
l

+
alEorithm is

p}mx
Because U ygds usually asmall limited number and the

4.4 Performance analysis and comparison

Most previous works [6], [10], [18], [28], [37] decide VM
migrationsforloadbalancingbasedondeterministicoredic- tion of
resource demands of VMs. To simplify our analysis, we assume a
deterministic load balancing scheme making
decisionsbasedonthedeterministicestimationofdemand
forresource Fby " ; in Formula (7). This load balancing
scheme tries to migrate VMs on the hotspot until it is not
overloaded.

Algorithm 1 Hotspot MigrationAlgorithm.
Input: U-thesetofallPMs, H-thesetofhots potPMs, I;-the
set of VMs on every | PM the demand d|5tr|but|ons of allVMs,

PP S A R T, - e T

grated and the destination PMs

1.5 m—0

e wnme 2r 51— 3

3:  bool newl. \Jm;frafwr: ~false;

forall PM [=
R;~—;{ R isthesetoftenseresourcesonPMi }
forall gesource rdo

ifer|  Dr=cf)=ithen
iv
o HLILIE! %
9 Comauteoverloadriskii);
10:  Sort H in decreasing order ofoyverioadrisk;
11:  forPM j=1,2,...in

=~ o B

12: foralj = Vdo

13: ComputeO Rreduction|7|basedon &;;

14: Sortljindecreasingorderof O Rreduction

15: D|v|de me grcups Ve, I’GZW F@abv
tervals of width o

16: V@udo

17: jmmf—ﬂ;mf—+m;

18: forallj = Ado

18: C;~1; {Cpstores the candidate PMs that

canaccommodate VM F

20: forall |=U\Hip

21: if ¥rpr Dy<c/\z1—sthen

2 o/ TRl

24: Toram L0

£2: R Pl s seses
minimum _migration cost for VM j }

27: Hmincost> Cosi(j Mthen

28: Jmin —mincost  Cost{jM);

29: 1£/ min O then

30: Addmigrationm ap pin g(min, M, 1108 m;

31: newl'Mmigration = true;

32: Update the resource allocation status on PM jand the

destination PM with the hypothetical migra- tion;
33: if PM jachieves the probabilistic guarantee on every
resourcethen

34: HHE-

35: Break;

36: it pewl Mmigration= fuethen,

37: break;

38: else

39: ReturnSm;

40:Return Sy

Prl @ < c| ;;.5[ ;<c)»0.5, Italso indicates that

wrththedetermlnlstlcscheme,theupperboundortheprob-

ability of resource r being overloaded is 0.5, which israther
NIgN.ACCOraINEIOFOrMUIAT LU}, TNEOVETrI0aapronaniity

i i
forthe PMis 1 — %51 —P')where P'i the pth[ability

of resource I being overloaded. Suppose R =4, then the
lUbperboundoroverioadrisktortheP Misashighasi.y3.

It indicates that the PM can be still overloaded with a high
probability even if the load balancer achieves its goal based
onitsdeterministicestimation.ltalsoreflectstheadverse
impactofhighlydynamicresourcedemandontheefficiency

of the load balancing.

In contrast, our stochastic load balancing scheme can limit
the upper bound of overload risk by the probabilistic guarantee
against the overloading for each resource. Given
3,accordingtoFormula(l),theupperboundofoverload

probability forthe PMis 1 (1 s)/*|. when s = 0.05,the
upper bound is 0,183, which 15 much smaller than 0.93.

The value of parameter 8 controls the overload prob- ability,
and also affects the resource utilization. Smaller 8 requires a PM
to reserve more resources to accommodate the possible
variances of resource demands, which may lead to less resource
multiplexing efficiency. It can be easily
illustratedbythefollowinginequalitywhichisequivalent

=

gz p+@71-8) ot 5 (14)

A=K

where Q71 8) increases with 8. Ta ensure this ineguality
WIth a smaller 8, some VMs may have to be migrated out

from the PM. Then, fewer VMs share the PM and thus the
resource utilization decreases. The previous deterministic
schemes do not involve the variance (the second term) on the
right side of the above inequality.
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5 PERFORMANCEEVALUATION

We conducted trace-driven experiments on CloudSim [9] to
evaluate the performance of our proposed stochastic load
balancing algorithm in a three-resource environment (i.e., CPU,
memory and bandwidth). Weused the VM utiliza- tion trace from
Planetlab [2] and Google Cluster [13] togenerate VM workload.
We implemented our stochastic load balancing algorithm in the
simulator, represented by SLB. We study the performance  in
terms of the number of VM migrations, the number of
overloaded PMs, the PM resource consumptions, the speed of
load balancing and the total performance degradations. We use
Sandpiper [36] to represent the reactive load balancing
algorithms and use CloudScale [28] to represent the proactive
load balancing algorithms.
We simulated the cloud datacenter with 1000 PMs
hosting 5000 VMs. The PMs are modeled from commer-

cial product HP Proljant ML110 G4 servers (1860MIPS
CPU, 4GB memory) and the VM5 are modeled from EC2 micro

instance(0.5 EC2 compute unit, 0.633 GB mem-
ary, which is equivalent to 500 MIPS CPU and 613 MB
memory). The CPU utilization trace from Planetlab VMs

and Google Cluster VMs, and memory utilization trace

800 :
oSLB Sandpiper

2 e 000 - eoudSce |
22 400
5

52 20

= 0

15 2 25
Load(xoriginalloadintrace)

Figure 7. The number of VM migrations ugingPlanet abtrace.

migrations

Totlalnum berof

~—n

1. 2.
Loag(xoriginaﬁoadintrace

Figure 8. The number of VM migrations using Google Cluster trace.

from Google Cluster VMs are used to drive the VM CPU and
memory utilizations in the simulation. To simulate bandwidth
usage, as in [29], we generated 5 different groups of (mean,
variance range) for bandwidth utiliza-

{0.2,0,05),{0.2,0.15),{0.3,0.05),(0.6,0.10},(0.6,0.15), andset
each VM's bandwidth utilization to a value generated by a
randomly chosen group. Weincreased the VM's workload to 1.5,

tion,

the performance under wvarious workload levels. At the
beginning, the VMs are randomly allocated to the PMs. Weused
this VM-PM mapping for differentload blanching algorithms in
each experiment to have fair comparison. When the simulation is
started, the simulator updates the resource utilization status of
all the PMs inthe datacenter every 5 minutes according to the
traces, and records the number of VM migrations, the number
of overloaded PMs (the occurrence of overloaded PMs) and the
resource utilization of all PMs and VMs during that
period.Weused0.75astheresourceutilizationthresholdfor CPU
memory and bandwidth usage to determine whether the PM is
overloaded. Sandpiper and CloudScale perform VM migrations
whenever a PM is detected overloaded (i.e., either CPU, memory
or bandwidth utilization exceeds 0.75) and select the destination
PM based on their corresponding PM selection algorithms. In
SLB, an overloaded PM chooses the VM based on the stochastic
model, and the migrating VM _chooses the destination PM
based on the stochastic

resource demand in SLB uses 1 = 30 most recent measure-

PITUUCT A LT A AU TUE Y (1T R T W WG T T s

51 The number of VMmigrations

Figure 7 and Figure 8 show the total number of VM migrations
with varying workload ratios. Figure 7 and

600
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Total number of
overloaded PMs

25

o 2 :
Load(xoriginalloadintrace)

Figure 9. The number of overloaded PMs using Planetlabtrace.
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Figure 10. The number of overloaded PMs using Google Cluster trace.
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Figure 8 show the experimental results with the Planet- Lab
trace and Google Cluster trace, respectively. For each workload
ratio, the number of VM  migrations  follows
SLB<Sandpiper<CloudScale. SLB  outperforms  Sandpiper
andCloudScalebecauseeachPMcanfindtheVMthatisex- pected to
effectively release PM workload with the highest probability, and
also can find the most suitable destination PM to host the
migrating VM, resulting in a reduced need of VM migrations in a

long run. That is, SLB is able to keep a long-term load balance
state while triggering a smaller number of VM migrations than
the alternative methods. Also, SLB proactively avoids overloading
the destination PMs in the future. Thus, it keeps the systemin a
balanced state for a relatively longer period of time, resulting in
fewer VM migrations than Sandpiper and CloudScale in the same
period of time. CloudScale generates a larger number of VM
migrations than Sandpiper in each round because CloudScale
migrates VMs not only for a correctly predicted overloaded PM
but also for an incorrectly predicted over- loaded PM, but
Sandpiper only migrates VMs for occurred overloaded PMs. The
results under the Planetlab tracehave higher numbers of VM
migrations than the results under the Google Cluster trace for
two reasons. First, the Planet- Lab trace has a relatively higher

workload level than the Google Cluster trace, meaning that the

average utilization of the PMs is mare close to 0,75, Second, the
workload in Planetlab is more fluctuant and tends to lead to
inaccurate predictions of the load balancingalgorithms.

5.2 The number of overloadedPMs

Inthisexperiment,eachPMchecksitsloadstatusevery

5 minutes during the simulation. A PM is regarded as
overloaded if the utilization of either its CPU, memory or
bandwidth resource exceeds the predefinedthreshold.

o
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c —

S240
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Figure 11. CDF of PM CPU utilization after load balancing.

Figure 9 and Figure 10 show the cumulative number of
overloaded PMs detected in the system during the 24 hour
simulation, with respect to the Planetlab trace and Google
Clustertrace.ThenumberofoverloadedPMsincreaseswith

workload ratio, and follows SLB<CloudScale<Sandpiper
foreachworkloadratio.SLBoutperformstheothertwowith  fewer
overloaded PMs since it uses the stochastic model for both the
migrating VM selection and the destination PM selection, to
maintain a long-term load balance state.
CloudScaleproducesfeweroverloadedPMsthanSandpiper because
its predicted overloaded PMs migrate VMs out be-
foretheybecomeoverloaded, whileSandpiperconductsVM

migrations upon the PM overload occurrence. The numbers for
the Planetlab trace are higher than those for the Google Cluster
trace due to the same reasons mentioned in Section 5.1.

5.3 PMresourceutilizations

Figure 11 and Figure 12 present the cumulative distribution
function (CDF) of the number of PMs versus the CPU and
memory utilizations, after the first load balancing with the
Planetlah trace in the three methods. The figuresshow that SLB
results in a similar resource utilization distribution across the
PMs and they keep the CPU and memory uti- lizations of all the
PMs under the threshold. Due to a long- term load balance state
maintenance caused by stochastic model based hotspot
detection and hotspot migration, SLB is able to keep all the PMs
in a medium resource utilization of around 50%. The CDF show
that SLB achieves a more balanced status for the system than the
other two methods. Due to the fluctuation of VM loads and
inappropriate VM migrations, Sandpiper and CloudScale
sometimes fail to achieve this goal. For Sandpiper, around 20% of
the PMs exceed CPU utilization threshold and around 10% of the
PMs exceed memory utilization threshold. For CloudScale,
around 10% of the PMs exceed CPU utilization threshold and
around 10% of the PMs exceed memory utilization threshold.

5.4 Thespeed of load balancing

We then measure the temporal distributions of the cumula-
tivenumberofoverloadedPMsinthesystemtomeasurethe
capabilityoftheloadbalancingmethodsinpreventingover-  loading
PMs in the long-term. Figure 13, Figure 14 and Fig- ure 15 show
the CDF of the number of overloads over time with the waorkload
ratio of 1.5, 2 and 2.5, respectively.Since
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Figure 12. CDF of PM memory utilization after load balancing.
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Figure 13. The number of overload PMs underworkload of ratio 1.5.
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Figure 14. The number of overload PMs underworkload of ratio 2.
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Figure 15. The number of overload PMs under workload of ratio 2.5.

we used the same random initial placement, the numbers of
overloaded PMs in the beginning are exactly the same for the
three balancing methods. When the workload is low, as Figure 13
shows, the number of overloaded PMs generated initially
accounts for 20% of the total number of overloaded PMs in
Sandpiper. The CDF curve of Sandpiper indicates that PM
overload can happen at any moment during the simulation time.
This is because Sandpiper only focuses on eliminating current
overloads, which tends to generate fu- ture overloaded PMs due
to the dynamically varying work- load requests from the VMs.
CloudScale and SLB not only eliminate the overloaded PMs
generated initially but also prevent overloading PMs. Wesee that
the number of over- loaded PMs generated initially accounts for
80% of the total number of overloaded PMs in CloudScale, and
only 20% are generated during the subsequent time in the 1
hour. SLB outperforms CloudScale due to its more accurate
stochastic model with sophisticated mathematical tools. Figure
14 and Figure 15 show similar distribution as in Figure 13 due to
thesamereasons.TheresultsconfirmthatSLBiseffectivein
preventing overloading PMs with different workloadlevels.

5.5 TheVM performancedegradation

When a VM is being migrated to another PM, its per- formance
(response time) js_degraded [34]. We alsoaim to minimize the
WM performance degradation caused by migrations. We calculate
the performance degradation D of

aVMthatmigratestoPMbasedonamethodintroduced
H’H

mqugqatjpn 5tartd. £J is the amp;ﬂtoﬁmm%qme
time to ccmgzlete the migration, ujthlsthe CPU#‘:"IIIE ion V B s

G1F oS B T s g i e s U e L b L At

to the destination PM. The distance between PMs can be
determined by the cloud architecture and the number of
switches across the communication path [24], [25].

Figure 16 znd Figure 17 show the total performance
degradation D of the three methods for the Planet- Lab
and Google Cluster traces, under 1.5x, 2x and 2.5x of workload,
respectively. We see that the total performance degradation of
SLB is lower than that of CloudScaleand Sandpiper in both traces.
This is caused by the distinguish-
ingfeaturesofSLB.First, SLBtriggersfewerVMmigrations.  Second,
SLB tries to minimize performance degradation in destination PM
selection by considering network topology. Third, 5LB chooses
VMs with lower utilizations. Sandpiper generates lower
performance degradation than CloudScale because it generates

10.0
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E2 40 '
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Figure 16. Total VM performance degradation using Planetlab trace.
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Figure 17. Total VM performance degradation using Google Cluster
trace.

fewer VM migrations as shown in Figure 7 and Figure 8. We also
see that in both traces, the performance degradation of the
three methods follows SLB<Sandpiper<CloudScale, and the
difference is small in the Google Clustertrace.

6 CONCLUSION

In this paper, we consider the VM migration based load
balancing problem with highly dynamic resource demands. By
our trace study, we demonstrate that in real world the resource
utilization of VMs are highly dynamic and bursty. The previous
load balancing schemes detect hotspots and

decide VM migrations based on deterministic resource de- mand
prediction, which can lead to poor performance and severe SLA
violations. To address this issue, we propose a stochastic load
balancing scheme. With characterizing the resource demands of
VMs as random variables, our scheme provides the probabilistic
guarantee against resource over- loading, that is, the aggregate
VM demand for any resource in a PM does not exceed its
capacity with a high probability. To this end, it addresses the
prediction of the probability distribution of resource demands,
and determines hotspots and VM migrations with stochastic
characterizations of re-
sourcedemands.TheVMmigrationalgorithminthescheme aims to
minimize the migration cost for load balancing considering the
network topology and improves the worst
performancethesystemcouldexperiencefromthehotspots.  Our
trace-driven experiments demaonstrate the efficiency and the
advantages of our scheme compared with the previous
deterministic load balancingschemes.

In the future, we will investigate the distribution of
VMdemands in a large-scale, and evaluate the impact of differ-
ent distributions of workloads on the performance of load
balancing. Specifically, we will look into the exponential
distribution and its impact on the efficiency of deterministic load
balancing schemes. We will extend the stochastic load balancing
scheme considering different probabilitydistribu- tions. In
addition, although our ¥M migration algorithm considers the
network topology by taking into accountthe distance from the
source to the destination PM for a VM migration, it does not
consider the bandwidth usages on the links of the migration
path. In practice, the link congestion on a path can prolong
migration time. On the other hand, many applications run on
multiple VMs in a distributed manner. To ensure application
performance, the
bandwidthdemandamaongtheseVMshavetobesatisfied.

Thus, determining the destination of VM migrations need to
consider the available bandwidth on the paths between the
destinations and other VMs used by theapplication.
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