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ABSTRACT: In this paper, local concept approach 

and the global concept approach have been reviewed. 

Firstly, the procedure for designing the optimal 

controller via local concept approach is listed. The 

stability of the entire closed-loop continuous fuzzy 

system is ensured. Then a systematic way to design a 

global optimal fuzzy controller and stabilizing a 

continuous fuzzy system is proposed by viewing in 

local and global concepts. A linear-like global system 

representation is proposed by viewing the fuzzy 

system in global concept by unifying the individual 

matrices into synthetical matrices. A performance 

comparison under two approaches is made. Stability 

has been demonstrated for both approaches while 

considering a mass-spring-damper mechanical 

system.  

KEYWORDS–Global optimal, Riccati equation, 

Riccati-like equation, T-S type fuzzy model 

 

I.     INTRODUCTION 
 Conventional control algorithms require a 

mathematical model of the dynamical system to be 

controlled. The mathematical model is then used to 

construct a controller. In many practical situations, 

however, it is not always feasible to obtain an 

accurate mathematical model of the controlled 

system. Fuzzy logic control offers a way of dealing 

with modeling problems by implementing linguistics 

which are nonformly expressed control laws that are 

derived from expert knowledge.  

The fuzzy control is more effective in 

dealing with real systems than the linear control 

theory. Moreover, the optimal control provides a most 

effective control strategy. Therefore, it is quite 

interesting to investigate the optimal fuzzy controller 

design concepts.  

[1]-[3]. One of the design techniques of 

Takagi-Sugeno (T-S) type fuzzy modeling and control 

is based on parallel distributed compensation (PDC) 

of nonlinear systems. In this concept each control rule 

is distributively designed for the corresponding rule of 

a T-S fuzzy model. For each rule, linear control 

design techniques can be used. The resulting overall 

controller is a fuzzy blending of each individual linear 

controller. The fuzzy controller, so obtained, is 

nonlinear in general and applies Lyapunov‟s method 

to do stability analysis. [1]. The stability analysis and 

control design problems are reduced to linear matrix 

inequality problems. A fuzzy controller is designed 

based on the LMI stability conditions. This approach 

had been applied to several control problems in [4], 

[5], [6]. In [7] the stability conditions are relaxed with 

constraints on control input and output in the optimal 

design.[8].A T-S fuzzy model based fuzzy controller 

and fuzzy observer are designed. [9]. The Linear 

matrix inequality (LMI) based design of fuzzy 

regulator and fuzzy observer are presented.   

[10]. In the field of optimal control is, a 

fuzzy optimal controller is designed by Wang, to 

stabilize a linear time invariant system. The 

Pontryagin maximum principle is used in design 

procedure. This design technique has the limitation 

that it is not good for nonlinear systems and therefore 

not has much practical implications. [11]. Tanaka, 

Taniguchi and Wang  shown an LMI based procedure 

to optimal fuzzy control by solving the minimization 

problem that minimizes the upper bound of a given 

quadratic performance function. [12]-[14]. Wu and 

Lin proposed two approaches named local concept 

approach and global concept approach of optimal 

controller design. In local concept approach, an 

optimal fuzzy controller design is achieved from a 

local view point. The controller, so designed, exposes 

properties based on the linear optimal control theory. 

[15]. Based on this concept, an optimal fuzzy tracker 

has been designed. [16]. The global concept approach, 

applies to continuous time systems. It presents a 

different procedure for controller design. It proposes a 

linear-like system representation for the fuzzy system 

problem via unifying the individual matrices into 

synthetical matrices. The derived control law is 

demonstrated to be the best for the entire system to 

reach the optimal performance index. [17]. The 

approach is then applied to the discrete time systems. 

[18]. Genetic algorithm (GA) was first introduced by 

J. Holland as search algorithm. Its extension is used in 
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fuzzy optimal controller design. The use of GA in the 

design of a fuzzy controller not only provides the 

global benefits of GA‟s, but also develops a 

systematic design approach for the fuzzy controller. 

[19]. Ho et.al. Integrated the orthogonal function 

approach (OFA) and the GA to study the quadratic 

optimal design problems of both the fuzzy PDC 

controller and the non-PDC controller (linear-state 

feedback controller) for the TS fuzzy model-based 

control systems. This proposed technique involves the 

time-consuming inversion of large dimension 

matrices as a result of the Kronecker matrix product 

during solving the feedback dynamic equations. [20]. 

They further   proposed a new method, which 

integrated the OFA and the hybrid Taguchi-genetic 

algorithm, to design the quadratic optimal controller. 

This method did not use the Kronecker matrix 

product. 

[21]. An optimal controller was designed by 

the dynamic programming approach and the inverse 

optimal approach subject to the constraint on control 

inputs for continuous time T-S fuzzy systems.  

 This paper comprises of application of local 

concept approach and global concept approach to the 

optimal fuzzy controller design. A common example 

is also given to illustrate the both approaches and 

demonstrates the stability. In section III the 

comparison of the two approaches is described. The 

two design methodologies are applied to an example 

in section IV. Section V gives the concluding 

remarks. 

                 

II.   BRIEF REVIEW 
Consider a non-linear plant described by the so called T-S type fuzzy model; 

:iR If  1x  is 1 ,.......,i nT x   is niT ,          

       then ( ) ( ) ( ) ( ) ( )i iX t A t X t B t u t   

                ( ) ( ) ( ), 1,2,..........,Y t C t X t i r        (1) 

where, 
iR   i

th
 rule of the fuzzy model. 

1,......., nx x   system states 

1 ,.......,i niT T    input fuzzy terms in the i
th

 rule. 

 1( ) ,....,
T

nX t x x   state vector 

( )Y t   system output vector 

( ), ( )i iA t B t  and ( )C t  respectively, nxn, nxm and n‟xn matrices whose elements are known to be piecewise 

continuous (PC) and real-valued functions defined on positive real space. 

The desired controller is a rule-based nonlinear fuzzy controller given as 

:iR If 1y   is 1 ,.......,i nS y  is  niS                   

       Then ( ) ( )iu t r t ,                    1,....,i        (2) 

where 

1...., ny y   elements of output vector ; 

1 ,....,i niS S  input fuzzy terms in the  i
th

 control rule; 

( )u t or ( )ir t  plant input (i.e., control output) vector. 

The problem is to, find a controller (.)u
, which can minimize the quadratic cost functional 

1

0

1 1

( (.)) ( ) ( ) ( ) ( ) ( )

( ) ( ),

t

T T

t

T

J u X t L t X t u t u t dt

X t QX t

   




;    0 1t t t                                                        (3) 

over all possible inputs (.)u  of class piecewise-continuous. 

 

Local concept approach:  

Finite-Horizon Problem: For the fuzzy system in (1) and fuzzy controller in (2), let  
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( ), ( ), ( ), ( ) ( ) 0,

0

T

i i

T

A t B t C t L t L t

Q Q

 

 
 

be given matrices. If there exists on an symmetric positive semidefinite solution to the matrix Riccati differential 

equation 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

T

i i

T

i i

K t A t K t K t A t

K t B t B t K t L t

  

 


                             

                                                                               (4) 

where the final value of the dependent variable 1( ), ( )K t K t  is equal to the final state penalty index Q, and , 

then there exists a local optimal fuzzy control law 

1( , , ) ( ), 1,...,T i

i ir B t Q t X t i r                     (5) 

where X
*
(t)  is the corresponding optimal state trajectory. And, the corresponding global minimizer is 

 
1

( ) ( ( ) ( )
r

i i

i

u t h X t r t  



                                    (6) 

which minimizes J(u(.))  in (3). The resulting optimal closed-loop system dynamics is described by 

 1

1

( ) ( ( )) ( ) ( ) ( ) ( , , ) ( )
r

T i

i i i i

i

X t h X t A t B t B t t Q t X t  



                                                                                                                                                                        

  0 1t t t                                                           (7) 

with 0 0( )X t X                                            

The above theorem considers that the horizon 1t  is fixed and  0 10,t t  is arbitrary. 

Infinite-Horizon problem: For the fuzzy system in (1) and fuzzy controller in (2), let Ai,Bi,C,L be given constant 

matrices and L = C
T
C . If (Ai,Bi) is completely controllable (c.c.) and (Ai,C) is completely observable (c.o.) for 

i=1,……….,r, then 

1) There exists a unique n x n symmetric positive semi definite solution, 
i , of the steady-state Riccati 

equation (S.S.R.E.)        

      0T T T

i i i iA K KA KB B K C C                   (8) 

2) The asymptotically local optimal fuzzy control law is              

      ( ) ( ), 1,..........., .T i

i ir t B X t i r 

             (9)              

      and their “blending” global minimizer   

       
1

( ) ( ( )) ( )
r

i i

i

u t h X t r t  



                               (10)        

      minimizes J(u(.)) in equation (3).  

3) and the optimal local feedback fuzzy subsystem                               

        ( ) ( ) ( )T i

i i iX t A B B X t 

                       (11) 

       is asymptotically and exponentially stable. 

 

Global concept approach:  

This approach formulates the distributed fuzzy subsystems and rule based fuzzy controller into one equation 

given as; 
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1 1

1

( ) ( ( )) ( ) ( ) ( ( )) ( ) ( )

( ) ( ( )) ( ) ( )

r r

i i i i

i i

r

i

i

X t h X t A t X t h X t B t u t

Y t h X t C t X t

 



 



 





 and the entire fuzzy controller is 

1

( ) ( ( )) ( )i i

i

u t w Y t r t




    

with 
1

( ( )) 1
r

i

i

h X t


  and   
1

( ( )) 1i

i

w Y t




  

where hi(X(t)) and wi(Y(t)) denote, respectively, the normalized firing-strength of the i
th

 rule of the continuous 

fuzzy model and that of the i
th

  fuzzy control rule. 

Introducing the following synthetical matrices, H(X(t)), W(Y(t)),A(t),B(t) and R(t).  where 

        1   ..........n r nH X t h X t I h X t I  
        (12) 

        1   ...........m r mW Y t w Y t I w Y t I  
         (13) 

                                    

1( )

.

( ) .

.

( )r

A t

A t

A t

 
 
 
 
 
 
  

  ,       

1( )

.

( ) .

.

( )r

B t

B t

B t

 
 
 
 
 
 
  

  ,    

1( )

.

( ) .

.

( )

r t

R t

r t

 
 
 
 
 
 
  

          (14) 

with  In and  Im denoting the identity matrices of dimensions n and m respectively.  

Based on these synthetical notations, the   original problem can be rewritten as a nonlinear but linear-like 

closed-loop fuzzy system; 

 
                  

     

      

    

X t H X t A t X t H X t B t W Y t R t

Y t C t X t

 




    

                                                                             (15) 

with X(t0) = X0, finding the optimal synthetical control law, R
*
(.) to minimize the quadratic cost functional 

 
 

   

1

0

1 1

( ) ( ) ( )
(.)

( ) ( ) ( ) ( )

( ) ( )

i

i

tt

i

t t

t

t i i i

X t L t X t
J R dt

R t W Y t W Y t R t

X t Q X t

 
  

  




    (16) 

This linear-like synthetical matrix representation for the entire T–S type fuzzy system materializes the design of 

the global optimal fuzzy controller in the way of general LQ approach, i.e., calculus-of-variation method. 

Finite-Horizon Problem: Consider the time-invariant fuzzy system and fuzzy controller described, respectively, 

by (1) and (2) with 
TL C C  in (16). 

 Let    0 1( ), ( ) , ,X t R t t t t   , denote the optimal solution with respect to ( (.))J R  in (16), 

  0 1( ), ( ) , ,i i i iX t R t t t t
 

    , denote the i
th

-stage optimal solution with respect to ( (.))iJ R  in  

 
   

1

0

1 1

( ) ( ) ( )
(.)

( ) ( ) ( ) ( )

( ) ( )

i

i

tt

i

t t

t

t i i i

X t L t X t
J R dt

R t W Y t W Y t R t

X t Q X t

 
  

  




 

                                                                           (17) 
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and   0 1( ), ( ) , ,i i i iX t R t t t t
 

 
    , be the i

th
-stage asymptotically optimal solution with respect to 

0

( (.)) ( ) ( ) ( ) ( )
i

i t t t

i i

t

J R X t LX t R t W W R t dt




     

                                                                                    (18) 

 If N > Ñ, (Ai,Bi) is completely controllable and (Ai,C) is completely observable , for all i = 1,………,r, then 

1)  
0 1

0 1

( ( ), ( )), , , 1,....., 1
( ), ( )

( ( ), ( )), ,
N N

i i i i

i i N

X t R t t t t i N
X t R t

X t R t t t t

 

  

       
 

    

  

where 
1 1

0 1 0 0, 2,........., &i it t i N t t   ;             (19) 

2) For the i
th
 stage, the optimal synthetical control law is 


1

0( ) ( ), ,i t t t t i i i

i i i iR t W WW B H X t t t
 

  
           

                                                                              (20) 

and the optimal trajectory is 

  0( ) ( ), ,i t t i i i

i i iX t H A H BB H X t t t
 

  
   

   

                                                                             (21) where
i  is the unique symmetric positive semidefinite 

solution of the SSRE  

0t t t t t

i i i iA H K KH A KH BB H K C C        (22) 

3) As for the last stage, the th stage, the optimal synthetical control law is  
1

( )

1( ) ( , ) ( )i t t t t t i i i

i i i iR W W W B t H t t X t
 

     (23) 

and the optimal trajectory is 

1( ) ( ) ( ) ( ) ( , ) ( ),i t t i i i

i i iX t H A t H B t B t H t t X t
 

   
      

                                                                            (24) 

where 1( , )i it t  is the symmetric positive semidefinite solution of the segmental Riccati DE  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

t t

i i

t t

i i

K t L t K t H B t B t H K t

A t H K t K t H A t

  

 



       (25) 

4) The minimum performance index is 

   
0 1

1
min

0 0,
1

0 0 1) 0

(.) ( ) ( )

( ) ( , ) ( ).

t

t

N
i i i i i

t t
i

N N N N N N

R J R X t X t

X t t t X t





 

 



  



 
  




     

                                                                             (26) 

 

Infinite-Horizon Problem: Which is the case that the operating time goes to infinity or is much larger 

than the time-constant of the dynamic system.For the fuzzy system and fuzzy controller in (1) and (2), 

respectively, if the linearized fuzzy system in (5) is controllable and there exists on [t0,) an n x n symmetric 

positive semidefinite solution (t, t0) to the forward Riccati-like 

 

 DE
   

   

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

t t

t t

K t L t K t H X t B t B t H X t K t

A t H X t K t K t H X t A t

 

 


 

                                                                            (27) 
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where 0K   and the initial value of the dependent variable 0( ) 0K t  , then there exists a optimal synthetical 

control law 

   
 

1

0

( ) ( ( ) ( ) ( )

( ) ( , ) ( )

t t

t t

R t W Y t W Y t W Y t

B H X t t t X t


   

 

 
 

    (28) 

 which minimizes 

     
1

0
1 1

(.) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .

( ) ( )

t

t t t

t i i it

J R X t L t X t R t W Y t W Y t R t dt

X t Q X t

   



                                                                            (29) 

and the corresponding global minimizer is 

 

  0( ) ( ) ( , ) ( )t tu t B H X t t t X t                     (30) 

The dynamics of the resultant closed-loop fuzzy system is described by 

   

  0

( ) ( ) ( ) ( ) ( )
( ) ( );

( ) ( , )

t

t

H X t A t H X t B t B t
X t X t

H X t t t

 

 



 
 
 
 



 

             0,t t                                                (31) 

 

with  0 0( )X t X . 

 

III. LOCAL CONCEPT VERSUS GLOBAL 

CONCEPT 
The global concept approach first converts 

the continuous fuzzy system to the linear-like global 

system representation. The individual matrices are 

unified into synthetical matrices. Whereas the local 

concept approach applies “blending” optimal local 

fuzzy controllers to achieve the global optimal. 

In the local concept approach, the sufficient 

condition of the existence of an nxn symmetric 

positive semidefinite solution  Π
i 
(t,Q,t1) to the matrix 

Ricatti differential equation (4) is proposed then the 

existence of local optimal fuzzy control law ri
*
(t) and 

corresponding global minimizer u
*
(t)  is achieved.  

In global concept approach the segmental 

Riccati-like differential equation is solved to find 

symmetric positive semidefinite solution Π
i 

(t,t1) at 

the i
th

 stage. Then the optimal control law R
*
(t) and 

corresponding global minimizer are determined. The 

membership function is assumed to be invariant 

during the whole single stage. The specifically 

designed algorithm called dynamic decomposition 

algorithm (DDA) incorporates all the above 

conditions. 

Hence, in global concept approach due to the 

proposed dynamic decomposition algorithm, the 

solution to the optimal controller design on computer 

is achieved conveniently. Whereas in local concept 

approach the procedure of optimal controller design is 

a theoretical one. 

The restrictions on the chosen membership function 

are applied by the criterion; 

                
1

( ( ) / HdH X d k    

and             0( ) ( )iH X t H X t   ˂ 
2Hk       

(32) 

To ensure that the membership degrees corresponding 

to optimal trajectory at t0
i
 do not change in abrupt 

shape to check the almost invariant criterion for the 

entire i
th

 stage. These conditions are considered in 

dynamic decomposition algorithm, whereas local 

concept approach does not have the above restrictions.

   

 

IV.   NUMERICAL SIMULATION 
         Consider a nonlinear mass-spring-damper mechanical system shown below in fig. (1); 
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Fig.1 mass-spring-damper mechanical system 

 

The system can be formulated as 

( , ) ( ) ( )Mx g x x f x x u                                (33) 

where M is the mass and u  is the force;f(x) and g(x,x)  are the nonlinear or uncertain terms with respect to the 

spring and   the damper, respectively, and  (x) is the nonlinear term with respect to the input term[8] . We make 

the same assumptions as Tanaka et al. [8] did and reformulate the system as 
3 30.1 0.02 0.67x x x x u       (34)                               where  1.5 1.5x   and  1.5 1.5x  . 

Let    1 2 1 2( ) ( ) ( )
t t

X t x t x t x x  . The system in the above can be described by the following T–S 

type fuzzy model [17]: 

R
i 
 : IF 1( )x t    is 1

iF  
 and 2 ( )x t  is  2

iF  

Then  ( ) ( ) ( ) ( ) ( )i iX t A t X t B t u t            

           ( ) ( ), 1,.....,4.Y t CX t i    

where the initial conditions are 

 0(0)X X  and 0(0)Y CX  with 2C I  for every rule and the membership functions  

are chosen as  

2
1 2 1

1 1

2
3 4 1

1 1

2
1 3 2

2 2

2
2 4 2

2 2

( )
1 ,

2.25

( )
,

2.25
( )

1 ,
2.25

( )
1 '

2.25

F F

F F

F F

F F

x t

x t

x t

x t

 

 

 

 

 
   

 

 

 
   

 
 

   
 

 

1

0 0.02

1 0
A

 
  
 

  ,    
2

0.225 0.02

1 0
A

  
  
 

 

3

0 1.5275

1 0
A

 
  
 

 ,
4

0.225 1.5275

1 0
A

  
  
 

 

We further assume fuzzy controller given by 

R
i 
 : IF 1( )x t    is 1

iF  
 and 2 ( )x t  is  2

iF       

Then      ( ) ( )iu t r t   
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 Accordingly, the firing-strength of the i
th

 rule is   2 4

2 2( ) .i F Fx t    and  

the normalized firing-strength of the i
th

 rule is  

 
 

 
4

1

( )
( )

( )

i

i

i

i

x t
h X t

x t









 for 1,......,4.i    

The parameters are set as follows; 1 2 3 4 1 3 2 4

1 1 1 1 2 2 2 2 0.5F F F F F F F F                

   ( ) 0.25 ( ) 0.25i ix t h X t     as  
4

1

( ) 1i

i

x t


 ,     21 0 ; 1 0 ,
t

iB C L I    

 

With Local Concept approach:  

        The subsystem  has rank[Bi,AiBi] = 2 and rank [C
T
,AiC

T 
] = 2 indicating the subsystem (Ai ,Bi) to 

completely controllable and (Ai,Ci) to completely observable for all i = 1,2,3,4. Substituting the above matrix 

values to the steady state riccati equation (SSRE) (4)   i.e. 

0T T T

i i i iA K KA KB B K C C     

gives the following valid solution; 

For
1.7206 0.9802

1; ;
0.9802 1.7209

i k
 

   
 

  

corresponding local optimal control law from(5) i.e.                                        

( ) ( ), 1,...., 4.T i

i ir t B X t i 

   is 

 1 1 2( ) 0.9802 1.7206r t x x     

For 
1.5102 0.9802

2; ;
0.9802 1.7311

i k
 

   
 

  

As found earlier, corresponding local optimal control law is                  

 2 1 2( ) 0.9802 1.5102r t x x      

For 
1.2635 0.2982

3; ;
0.2982 2.3068

i k
 

   
 

 

corresponding local optimal control law  is  given as                

 3 1 2( ) 0.2982 1.2635r t x x     

For 
1.0584 0.2982

4; ;
0.2982 1.9994

i k
 

   
 

  

corresponding local optimal control law  is  given as               

 4 1 2( ) 0.2982 1.0584r t x x     

The global optimal control law is given by (6) 

4

1

( ) ( ( ) ( )i i

i

u t A X t r t  



   

Substituting 1 2 3 4 1 2 3, , , , ( ), ( ), ( )A A A A r t r t r t  
 and  4 ( )r t

 calculated earlier, we get 

 1 2( ) 0.6392 1.3882u t x x      

The optimal closed loop system by (7) is described by 

 ( ) ( )T i

i i iX t A B B X t 

   
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On substituting the ,i iA B and
i , we get   1

1 2

2

0 1
( )

1.5007 1.4128

T x
X t x x

x

   
    

   
 

Fig. 2 illustrates the position and velocity responses of the closed-loop fuzzy system in different initial 

conditions. From the simulation results, we find that the designed optimal fuzzy controller can quickly push the 

system from various initial states to and stay at the desired states. 
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(iv) 

Fig .2  The state responses (position and velocity) of continuous time fuzzy system with  designed optimal 

controller via, local concept approach of optimal fuzzy controller design at the initial condition X(0)= (-1,-1)
T 

,    

(-1,1)
T
,(1,-1)

T 
and (1,1)

T
 at  (i),(ii),(iii) and (iv) respectively. 

 

With Global Concept approach:  

The linear-like dynamical fuzzy system representation for the nonlinear mass-spring damper mechanical system 

is  

                     t H X t A t X t H X t B t WX Y t R t   

         Y t C t X t  with  

   

1

2

3

4

A

A
A

A

A

 
 
 
 
 
 

 ;   

1

2

3

4

B

B
B

B

B

 
 
 
 
 
 

  ;   

1

2

3

4

R

R
R

R

R

 
 
 
 
 
 

 

              

              

1 2 3 4

1 2 3 4

            

         

H X t h X t h X t h X t h X t

W Y t w Y t w Y t w Y t w Y t

 



 

 
 

 

i.e. 

0 0.02

1 0

0.225 0.02

1 0

0 1.5275

1 0

0.225 1.5275

1 0

A

 
 
 
  
 
 
 
 
 
  
 
  

      ;       
 

1

0

1

0

1

0

1

0

B

 
 
 
 
 
 
 
 
 
 
 
  

 

 ( ( )) 0.25 0.25 0.25 0.25H X t  ; 

 ( ( )) 0.25 0.25 0.25 0.25W Y t   ; 

The subsystem  has rank[ Bi , AiBi] = 2 and  rank[C
T 

,AiC
T
]=2 indicating the subsystem (Ai ,Bi) to completely 

controllable and (Ai,Ci) to completely observable for all i =1,2,3,4. Substituting the above matrix values to the 

steady state riccati equation (SSRE) (13), gives the following valid solution; 
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i.e.   
1.3 0.4905

0.4905 1.7
K

 
  
 

   , 

the corresponding optimal control law is  given as   

1 2( ) 1.3 0.4905u t x x   ; 

and the corresponding optimal state trajectory is given by;   1

1 2

2

1.412 1.2645
( )

1 0

T x
X t x x

x


   

    
   

  

The outputs of the designed optimal fuzzy 

controller and the state responses of the resultant 

closed-loop fuzzy system are shown in figure 3, 

which reveals that the designed optimal fuzzy 

controller can promptly push the mass-spring-damper 

mechanical system from various intial states to and 

stay at the desired states.   

On comparison of the simulation results of 

mass-spring-damper mechanical system with the two 

approaches in figure (2) and figure (3) reveals that the 

state response with designed optimal controller via, 

local concept approach and global concept approach 

are exactly the same. Whereas the problem of optimal 

fuzzy controller design has been dealt in a different 

manner by the two methods. 
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(iv) 

Fig. 3 The state responses (position and velocity) of continuous time fuzzy system with  designed optimal 

controller via, global concept approach of optimal fuzzy controller design at the initial condition X(0)= (-1,-1)
T
, 

(-1,-1)
T
, (1,-1)

T 
and (1,1)

T
at (i),(ii),(iii) and (iv) respectively. 

 

V. CONCLUDING REMARKS: 
The reviewed   global concept approach of 

optimal controller design is basically the extension of 

the other reviewed approach i.e. the local concept 

approach for optimal fuzzy controller design. The   

global concept approach can be computer adaptive 

due to the inclusion of dynamic decomposition 

algorithm and is effective in providing solutions to 

bigger volume optimal fuzzy controller design 

problems.  
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